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Abstract

The concept of etiology is analyzed and the possibilities and limitations of deterministic,
probabilistic, and fuzzy etiology are explored. Different kinds of formal structures for the
relation of causation are introduced which enable us to explicate the notion of cause on
qualitative, comparative, and quantitative levels. The conceptual framework developed is an
approach to a theory of causality that may be useful in etiologic research, in building
nosological systems, and in differential diagnosis, therapeutic decision-making, and con-
trolled clinical trials. The bearings of the theory are exemplified by examining the current
Chlamydia pneumoniae hypothesis on the incidence of myocardial infarction. © 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

Clinical knowledge-based systems research may be viewed as the advent of an
engineering science of clinical judgment that will pave the way for the development
of clinical reasoning machines and the automation of clinical decision-making. This
automation will outperform the physician’s confined diagnostic-therapeutic prob-
lem-solving capabilities to simply allocate to her the role of a mobile peripheral for
gathering patient data. The adequate representation of the relevant medical knowl-
edge clinical reasoning is based on therefore requires that the clinical knowledge
engineer be aware of the methodological and epistemological problems associated
with (1) the concept of patient data, (2) the relations between these data and (a)
diseases and pathological processes on the one hand, and (b) their causes, on the
other. The area concerned with 2a is referred to as nosology, and the area concerned
with 2b is termed etiology. (Nosos=disease; aitia=cause.)

This paper deals with some basic problems of etiology mentioned above, and
may therefore be classified as metaetiology. (Nosology will be dealt with in the
sequel [21]). The conceptual foundations of etiology are analyzed and the possibility
of deterministic, probabilistic, and fuzzy etiology is explored. Different kinds of
conceptual structures for the relation of causation are introduced which enable us
to reconstruct the notion of cause on four distinct levels and with two shapes,
positive and negative:

A is a positive cause of B in class X (qualitative level)
(comparative level)A is a stronger positive cause of B in class X than is C
(quantitative level)A is to the extent 0.8 a positive cause of B in class X
(fuzzy level)A is a highly positive cause of B in class X

(qualitative level)A is a negative cause of B in class X
A is a stronger negative cause of B in class X than is C (comparative level)
A is to the extent −0.3 a negative cause of B in class X (quantitative level)

(fuzzy level)A is a weakly negative cause of B in class X

The qualitative level may be exemplified by the following two conjectures we have
probabilistically extracted from current literature and thoroughly analyzed: (1)
Chlamydia pneumoniae infection is a positive cause of coronary heart disease in the
population of non-diabetics; (2) aspirin is a negative cause of myocardial infarction
in men with elevated C-reactive protein concentrations.

The framework developed in this way may help adequately manage some of the
methodological difficulties emerging in etiology, epidemiology, in systematizing
nosology and in causal differential indication on the one hand [19], and in the
engineering of causal knowledge, on the other. Our analysis of etiology in this
paper precedes our discussion on nosology in the sequel because the cause-effect
terminology is needed for the latter.
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2. Preliminaries

Etiology is the inquiry into clinical causation. It deals with the question of how
a particular clinical e6ent such as

a symptom or a set of symptoms,
a sign or a set of signs,
a pathological state or a set of pathological states, and
a disease or a set of diseases

in class level, not in an individual patient, is generated. For example, ‘What is the
cause of lupus erythematosus?’ is an etiologic question. The goal is to identify the
causes of human and animal suffering insofar as this suffering presents itself as
illness to call upon medical responsibility. The rationale behind this etiologic
endeavor comprises the following two basic postulates: First, cure for and preven-
tion of clinical events presuppose knowledge about their causes. Second, a clinical
event will disappear if its cause is removed [14,17]. Although these protoetiologic
postulates are not quite true, they demonstrate how important in medical research
and practice the belief in the role of causes may be. Since this belief strongly
governs both medical actions and public trust in medicine, it is highly desirable that
the knowledge on causes etiology is producing, be well-grounded. But a prerequisite
for it being well-grounded is the clarity about the foundational question: what is a
cause? Let us relate this question with an etiologic revolution in rehearsal.

2.1. Is myocardial infarction an infectious disease?

In the mainstream of the psychoanalytic movement in the first half of this
century many diseases with empty or speculative etiology became ‘psychosomatic’
ones. Among the prominent examples was, and still remains in some niches of the
therapeutic power, the gastric ulcer. Countless patients underwent gastrectomy or
vagotomy because psychosomatic and other modes of treatment failed to cure their
ulcers. During the last 15 years or so we have been witnessing the dramatic move
of this health disorder to another etiologic realm, i.e. to the theory of infectious
diseases. Helicobacter pylori infection is viewed as a cause of gastric ulcer, and is
successfully treated by antibiotics.

Another, even more dramatic move of a second disease group to the same
etiologic paradigm seems to be underway: atherosclerotic cardiovascular disease,
well-known as ischemic heart disease, coronary artery disease, and coronary heart
disease, is a major health problem in the industrialized countries causing nearly half
of the deaths through myocardial infarction and related clinical events. We had
been told until now that hypercholesterolemia, hypertension, cigarette smoking,
stress, and lack of physical exercise were the main risk factors for coronary heart
disease, and thus for myocardial infarction. And we were advised accordingly: don’t
smoke, don’t eat too much fat! There is a brand-new story, however (current date:
October 1996). It seems that coronary heart disease is in the process of abandoning
its venerable causes mentioned above, and of assuming a new, major cause.
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Chlamydia pneumoniae is a recently discovered, Gram negative, intracellular
bacterium that causes acute respiratory infections in all age groups [3]. We are
currently being told that this bacterium is an important cause of coronary heart
disease and may in the near future dislodge the classic risk factors mentioned above
[8,9,22,26]. Should this etiologic hypothesis be able to intrigue the clinical commu-
nity and to get ground in the years ahead, myocardial infarction is likely to become
an infectious disease as well. Also we will be advised anew: take antibiotics! ‘‘…the
rise and fall of the incidence of coronary artery disease in the USA from the 1940s
through the 1970s appears to emulate that of an infectious epidemics’’ ([10], p.
1555).

The medical community, more or less surprised by a new bacterium taking reign
in a classic clinical domain, is currently asking the question: is it true that
Chlamydia pneumoniae infection is a major cause of coronary heart disease? ‘‘The
simple demonstration of a prevalent microbe in atherosclerotic lesions does not
prove a causal role for the agent’’ ([1], p. 872). ‘‘Evidence includes elevated
serologic titers as well as the presence of Chlamydia pneumoniae within atheroscle-
rotic lesions…However, these are preliminary and uncontrolled findings that do not
yet prove an etiologic link. Whether Chlamydia pneumoniae exists as an ‘innocent
bystander’ or has a direct causative role in the development of coronary artery
disease remains to be seen’’, ([10], p. 1555).

That is true. But remains to be seen until when? Until the etiologic and clinical
community will have found acceptable answers to following proto- and metaetio-
logic questions: what is an etiologic link? What is causation? What is a causative
role? What is a cause at all, and what is a major or a minor cause? How do we
prove whether or not a particular factor plays a causal role in the development of
a clinical event?

Without addressing these basic questions we will only get used to the strange
historical fact that clinical events from time to time change their etiologic camp, but
we do not know why. Maybe through social fluctuations of the therapeutic power?
Let us therefore turn our attention to the questions above.

2.2. Multiplicity, plurality, and temporal priority of causes

We do not know yet what a cause is. Our usage of this term therefore is
provisionally a colloquial one and will be purified stepwise. Whatever else causes
may be, we take them to be events that cause other events, the latter ones called
their effects. The term ‘event’ is general enough to also cover processes as chains of
time-sequential events, networks of simultaneous events, temporal dynamics of such
networks as complex processes and histories, etc.

In natural languages causal relationships between events are purported by
expressions like: because, due to, for, therefore, leads to, contributes to, develops,
brings about, generates, affects, is effected by, etc. ‘Due to’ the laxity of these terms,
in causal claims a clear distinction must be made between (a) singular causes
referred to in individual-level causal talks like ‘your hypercholesterolemia caused
you to suffer coronary heart disease’ and (b) generic causes asserted in population-
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level causal talks such as ‘hypercholesterolemia is a cause of coronary heart
disease’. The former case, the individual instance, is the concern of diagnostic
reasoning, while etiology is concerned with the latter case, the class.

The popular talk on causation and causes, however, is a source of misunder-
standing in that it refers to an event as the cause of another one as if there were or
could be no other causes of the same event. It is asked, for example, ‘what is the
cause of myocardial infarction?’. We will without further ado abandon this doctrine
of monocausationism and will assume a multiplicity of causes instead. An event
such as myocardial infarction may have a 100 or more different types of causes,
Cause1, Cause2, Cause3,…, and so on. Chlamydia pneumoniae infection may be one
of them. Helicobacter pylori infection may be a second one, Cytomegalovirus
infection a third one, etc. ([2,7])(see Fig. 1).

A second step in our differentiation of causes is this: each or some of the distinct
causes Cause1, Cause2, Cause3,… of an event may consist of a plurality of n\1
partial causes C1, C2,…, Cn, also called factors, co-factors or conditions, such that,
for example, Causei=Ci 1

& Ci 2
& … & Cin

. For instance, it may be that one of the
causes of myocardial infarction is the following complex event comprising six
co-factors: ‘diabetes and hypercholesterolemia and cigarette smoking and hyperten-
sion and stress and lack of physical exercise’.

Human knowledge rapidly changes and fades away. Search for causes therefore
is useless if the causal knowledge it promises is void of practical values such as in
cosmogony. In practical areas like medicine knowledge of causes is meaningful only
to the extent to which it contributes to the advancement of our actions against
human and animal suffering. An action, generated and guided by a particular
causal belief, is itself a cause, i.e. an intentional cause implemented by someone to
produce an effect [14]. Thus, alleged knowledge of causes in medicine generates new
causes in terms of human agency in diagnostic, therapeutic, preventive, social,
economic, and political domains. In virtue of this worldmaking instrumentality,
knowledge of causes should be well-grounded as already expressed above.

In spite of some quantum theorists’ belief in backward causation, it is ontologi-
cally and action-theoretically problematic to presume that in human sphere one
could by doing something today produce an effect yesterday. In human sphere, the
arrow of causation is not directed backwards, so to speak. Moreover, in order for
cause and effect to be distiguishable from one another they must not be supposed

Fig. 1. Multiple causes of an event.
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to be simultaneous entities. Given two such events, we will never be able to
recognize which one of them causes the other one because they always appear and
vanish simultaneously. Hence, in etiology retrograde and simultaneous causation is
excluded. The arrow of causation is directed forwards. The first axiom of an
etiologic calculus therefore would run as follows: A cause precedes its effect in time.
We call this basic requirement temporal priority of causes, or temporal succession of
effects.

However, temporal succession is not sufficient for an event to be the effect of a
preceding one. A frequent mistake made both in everyday life and science is the
erroneous causal belief ‘after that so because of that’. An illustrative example of this
post-hoc-ergo-propter-hoc fallacy would be the assumption that the storm was
caused by the rapidly falling of barometric reading because it always occurs after
the latter. A fallacious etiology of this type will be referred to as a barometer-
causes-storm fallacy. That both events have a common cause and that the falling of
barometric reading is only a spurious cause of the storm is a warning hint at
doubtful etiologic studies which on a closer look exhibit the same line of fallacious
reasoning. Regarding the correlation between elevated Chlamydia pneumoniae
antibodies and the incidence of myocardial infarction reported in Section 2.1 above
the question arises: is this antibody increase the barometer, and myocardial
infarction the storm? Despite the critical appeal such questions may have, in
situations like this one, waiting for confirmation of ‘‘preliminary and uncontrolled
findings’’ ([10], p. 1555) is inappropriate. Maximize utility according to the
Bayesian decision rule, i.e. supplement theoretical, epidemiologic studies by thera-
peutic experiments against the suspected causative factor through antibiotics!

3. Deterministic etiology

In an etiologically ideal world we would have clear-cut and logically well-treat-
able if-then relationships of the following form between causes and their effects: if
cause Causei occurs, then effect Ej occurs. Assuming that cause Causei consists of
a plurality of n]1 partial causes Ci 1

,…, Cin
, the general structure of this cause-

effect relation would be:

If conditions Ci 1
& … & Cin

occur, then effect Ej occurs.

A simple example would be the etiologic statement: ‘if a child is exposed to measles
virus and is not inoculated, it will suffer measles’. However, there are scarcely
deterministic etiologic relationships of this kind. Most etiologic relationships are
merely of probabilistic nature having only a probability connection between the
antecedent event and the consequent event such as, for instance, ‘a non-inoculated
child exposed to measles virus will suffer measles with probability 0.23’. That means
that the present world is etiologically not ideal. We will nevertheless clarify in this
section the logical structure of deterministic etiologic relationships to see that even
if they would exist they could be embedded into the probabilistic etiology discussed
in Section 4 below (c.f. [18]).
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Let S be an interpreted language of the first order. P, Q, R,… may be n-ary
predicates of S with n]1. Individual variables are symbolized by x, y, z,…,
t, t1, t2,…, the latter ones being time variables. If P is an n-ary predicate,
P(x1,…, xn−1, t) is an atomic sentence. It says that P at time t applies to x1,…, xn−

1. For example, ‘John is suffering from gastric ulcer today’, that is, Pxt, where
t= today.

Atomic sentences and their negations will be called state descriptions in S and
will be symbolized by Greek letters a, b, g,… If a and b are state descriptions in S,
their conjunction a�b is also a state description in S. Thus, state descriptions in
S are temporalized simple statements or conjunctions of any length. They represent
simple or complex events occurring at particular instants or periods of time.

If a is a positive, atomic state description P(x1,…, xn−1, t) or its negation
¬P(x1,…, xn−1, t), the set {t} is referred to as the time set of a, and is written
time(a). The set {P} is referred to as its predicate set and written predicate(a). If
a�b is a state description, then time(a�b)= time(a)@ time(b). Also, predi-
cate(a�b)=predicate(a)@predicate(b). For example,

time(‘John has a cough today and he had fever yesterday’)={today, yesterday};
predicate(‘John has a cough today and he had fever yesterday’)={has a cough,
has fever};
time(Pxt1�Qxt2�¬Pxt3)={t1, t2, t3};
predicate(Pxt1�Qxt2�¬Pxt3)={P, Q}.

Let SL be the extended language S@L where L is any system of the first-order
predicate logic added to S. If a and b are state descriptions in SL with the free
individual variables x1,…, xm, t1,…, tn, then g is a deterministic law of succession in
SL if and only if (1) g is the predicate-logically closed generalization
Öx1… ÖxmÖt1… Ötn(a�b); (2) g is an empirical sentence, i.e. not logically valid and
not inconsistent and not undecidable in SL ; (3) every ti� time(a) is earlier than
every tj� time(b); and (4) every predicate P�predicate(a) is extensionally different
from every predicate Q�predicate(b). For instance, the following statement is a
deterministic law of succession: ‘if a massive thrombosis occurs in a main coronary
artery of someone now, she will suffer myocardial infarction within the next few
minutes’.

For the sake of convenience, the quantifier prefix Öx1… ÖxmÖt1… Ötn of a
deterministic law of succession is written P. If g is a deterministic law of the form
P(a�b), the statements a and b are respectively referred to as its antecedent and
consequent, symbolized by antecedent(g) and consequent(g). For example, if g is
ÖxÖt1Öt2Öt3(Pxt1�¬Qxt2�Rxt3), then we have: antecedent(g)= ‘Pxt1�¬Qxt2’
and consequent(g)= ‘Rxt3’.

The sentence a1� ···�an¯ai is the conjunction a1� ···�an minus the ith link
ai, where 15 i5n. If P(a1� ···�an�b) is a deterministic law of succession in
SL, then ai is deterministically rele6ant to b with respect to a1� ···�an¯ai if and
only if ¬P(a1� ···�an¯ai�b) is true in SL. That means that the removal of the
part ai from the whole a1� ···�an of the antecedent falsifies the statement
P(a1� ···�an¯ai�b). For example, in the following statement the part ‘x is a
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male’ is not deterministically relevant to myocardial infarction with respect to
thrombosis in the coronary artery: ‘for all x, if x is a male and a massive
thrombosis occurs in one of his main coronary arteries now, he will suffer
myocardial infarction in a few minutes’. Being a male is a redundant condition in
the antecedent.

A statement g of SL is a deterministic causal law in SL if and only if g is a
deterministic law of succession in SL and every ai�antecedent(g) is deterministically
relevant to consequent (g) with respect to antecedent (g)¯ai. That is, if its an-
tecedent does not contain any redundant part.

It is of course possible that for a particular clinical event such as ‘myocardial
infarction’ there are q\1 deterministic causal laws:

P1(a11� ···�a1m�b),
·
·
Pq(aq1� ···�aqr�b),

each of them expressing a particular Causei=Ci 1
& Ci 2

& … & Cin
with n]1

factors in its antecedent ai 1
� ···�ain

and the myocardial infarction event in its
consequent b. In such a deterministic case of multiple causation, each antecedent
cause Causei is a sufficient cause of the consequent event, but none of them is a
necessary one because in its absence any one of the rest will also do as well. The
well-known and acclaimed INUS condition of John Leslie Mackie may now be
clearly interpreted as each part aij

of these antecedents, i.e. each of the factors Cij
of the Causei. ‘‘It is an insufficient but non-redundant part of an unnecessary but
sufficient condition’’ ([6], p. 62). ‘‘What is typically called a cause is an INUS
condition…’’ (ibid., p. 64).

As we will see at the end of Section 4.3, however, a cause is not an INUS
condition as Mackie suggests. And it is also not recommendable in medical etiology
to wait for INUS conditions simply because the set of deterministic causal laws is
nearly empty. For this reason we will be reflecting on the possibility of non-deter-
ministic etiology.

4. Probabilistic etiology

Does Chlamydia pneumoniae infection play a genuine causative role in the
development of coronary heart disease or is it merely a spurious cause of the
disease? This example question that we had already anticipated above is the typical
etiologic question asked with regard to any factor which is suspected to play a
causative role in the pathogenesis of a particular clinical event. Thus, the main
problem and task of etiology is to discriminate genuine causal factors from spurious
ones. What is needed, therefore, is a theory of etiology that helps manage this task
adequately. Some thoughts in this direction are offered in this section. Although
Patrick Suppes’ [25] theory of probabilistic causality has been the main source of
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inspiration to me, the conceptual framework developed has an entirely different
structure and introduces also a new causal terminology and apparatus.2

There is a widespread, initial presumption, indeed a prejudice, against probabilistic
causality because people who equate probability with indeterminism believe that there
are no causes where only probabilities can be calculated. However, it will not be our
concern to convert these religious determinists.

4.1. Probabilistic rele6ance of e6ents

The sort of etiologically useless association between events we will have to neglect
is the spurious correlation. And the sort of etiologically important association between
events we will have to follow closely is the causal interaction. What is a spurious
correlation, and what is a causal interaction? We will base these concepts upon the
technical term of probabilistic independence. To this end we need some terminologic
arrangements.

We distinguish between singular events and generic events, the latter ones also called
event types. A singular or indi6idual e6ent is an occurrence localized in time and space,
such as, for example, a particular patient’s myocardial infarction occurring on a
particular day. The class of individual events of the same type is referred to as a generic
e6ent, e.g. the myocardial infarction occurring in every patient who suffers this disease.

We will tackle causation as a relation between generic events and not between
individual events. We will not be interested in causal explanations and individual
causal assertions such as ‘your smoking caused you suffer myocardial infarction’ (see
[18]). We will therefore be concerned with generic events only, simply called events.
They are symbolized by Roman capitals A, B, C,…, and are treated as sets so as to
enable us to use methods of set theory and logic.

Let A and B be two events. By using a stroke symbol ‘�’ we will compose of them
a complex event B � A which we will call a conditional event. The conditional event
B � A is ‘event B on the condition that event A has already occurred’. Stated simply,
it reads ‘event B given event A’, or ‘B conditional on A’. For example, someone’s
suffering myocardial infarction given that she is a diabetic is a conditional event.

Maybe a conditional event B � A will certainly occur or will never occur. The latter
is the case if the event B never occurs. We can therefore speculate upon the probability
of a conditional event in advance, and ask how likely B � A may be. Using the
probability function p which assigns a number to an event, we write ‘p(B � A)=r ’ to
express the statement that ‘the probability of B given A is r ’ where r is a real number
ranging from 0 to 1. We call p(B � A) the probability of the conditional event B � A,
or the conditional probability of B, while p(B) is the unconditional, absolute probability
of the event B.3

2 For details, see [20]. The history of the probabilistic-casual idea goes back to Hans Reichenbach [11].
Further elaboration was done by Wesley Salmon [23]. Patrick Suppes’ theory, however, was the first
comprehensive, creative, and ingenious work on the subject. I hope my framework is a genuine
amendment and has overcome the faults his theory has been accused of in the literature.

3 Let us not dispute about the nature of ‘probability’, about whether it is something subjective,
objective, logical, or a propensity, a relative frequency in the long run, or what not. Whatever the
probability may be, we talk about it using some words which we will introduce in this section.
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The syntactical convention in using the conditional event sign � ‘given’ is this:
intersection (S ) and union (@ ) dominate �. For example, YSZ � X is (YSZ) � X,
but not YS (Z � X). Further, it may be recalled that the notion of conditional
probability is defined in terms of the absolute probability as follows:

p(B � A)=
p(BSA)

p(A)
. (1)

Two events B and A are said to be probabilistically independent of one another if
and only if p(BSA)=p(B) ·p(A), i.e. if the probability of their joint occurrence
equals the product of the probabilities of their individual occurrence. If we divide
through both sides of this equation by p(A) we obtain:

p(BSA)
p(A)

=p(B). (2)

Eq. (1) and Eq. (2) imply:

p(B � A)=p(B). (3)

We have thus arrived at the corollary that an event B is probabilistically indepen-
dent of an event A if and only if its probability conditional on the occurrence of A
equals its unconditional probability. Its probability is not changed by A occurring.
Put in other words, event A has obviously no influence on the occurrence of B. The
two events are uncorrelated.

The corollary implies that an event B is probabilistically dependent on an event A
if and only if p(B � A)"p(B). ‘Dependent’ does not mean that there is an interac-
tion between A and B, any kind of ‘causal influence’ so to speak. The relation of
probabilistic dependence remains, prima facie, merely a numerical phenomenologi-
cal characteristic we observe, usually referred to as correlation. It may in a
particular case exhibit any of the following two directions of the inequality
mentioned:

p(B � A)\p(B) (positive correlation) (4)

p(B � A)Bp(B). (negative correlation) (5)

The probabilistic dependence of B on A may be a positive one, as in case (Eq. (4)),
or a negative one as in the latter case (Eq. (5)). Thus, positive dependence or
correlation turns out to be a probability increase. An event B is positively proba-
bilistically dependent on an event A if and only if the occurrence of A raises the
probability of B. Conversely, negative dependence or correlation is a probability
decrease. An event B is negatively probabilistically dependent on an event A if and
only if the occurrence of A lowers the probability of B.

For example, it may be that for a member of German population the probability
of suffering coronary heart disease is 0.00001, while the probability of the same
event given Chlamydia pneumoniae infection is 0.0001. By using the shorthand
notation

coronary heart disease is present,forchd
for Chlamydia pneumoniae infection is present,chlamydia
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we would then have the following positive correlation:

p(chd � chlamydia)\p(chd). (6)

This example says that Chlamydia pneumoniae infection raises the probability of
suffering coronary heart disease. Would we according to this evidence have reason
to presume that Chlamydia pneumoniae infection is a cause of coronary heart
disease, that it has a causal role for this disease? Is an ‘etiologic link’ we are trying
to understand, a probability increase or some particular kind of that? For analyzing
this question we will need a second concept of dependence, i.e. the notion of
conditional dependence.

Two events B and A are said to be probabilistically independent of one another
conditional on a third event C if and only if

p(BSA � C)=p(B � C) ·p(A � C), (7)

probabilistically dependent on one another conditional on C, else:

p(BSA � C)"p(B � C) ·p(A � C). (8)

That means that two events B and A given a third event C are probabilistically
dependent if according to Eq. (8) the probability of their joint occurrence BSA
conditional on C differs from the product of their individual probabilities condi-
tional on C. They may be positively or negatively dependent on one another:

p(BSA � C)\p(B � C) ·p(A � C), (positive) (9)

p(BSA � C)Bp(B � C) ·p(A � C). (negative) (10)

In the following discussion this relation of conditional dependence, also called
conditional correlation, will be of particular importance. It will enable us to
understand what it means to say that two events B and A are interactive, i.e. that
one of them exerts some kind of causal influence on the other one. For instance,
with reference to a recent epidemiologic study which we will quote below, let us
conditionalize our two clinical example events (coronary heart disease, Chlamydia
pneumoniae infection) on the events of being a diabetic patient or a non-diabetic
patient, respectively. Based on the study we will refer to we can postulate in
advance that:

p(chdSchlamydia � diabetics)=p(chd � diabetics) ·p(chlamydia � diabetics),
(11)

p(chdSchlamydia � non-diabetics)

\p(chd � non-diabetics) ·p(chlamydia � non-diabetics). (12)

In this case, we would obviously have reason to say that according to Eq. (11)
coronary heart disease and Chlamydia pneumoniae infection are, in the population
of diabetics, probabilistically independent of one another. But according to Eq.
(12), in the population of non-diabetics they are probabilistically dependent.
Following questions arise: why are they independent in diabetics and dependent in
non-diabetics? And what kind of dependence is it? Is it merely a spurious correla-
tion or is it a causal interaction? Which one of the two clinical events may play the
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causative role? Does Chlamydia cause atherosclerotic lesions in heart arteries, and
thus coronary heart disease, or is the atherosclerotic plaque merely a fertile ground
for Chlamydia to be deposited and grow? Or is there a third possibility, a common
cause for both events?

To account for etiologic questions of this kind, we now will put the above
preliminaries in a concept of probabilistic rele6ance upon which to build our
concepts of causal relevance and irrelevance below. The definition of conditional
dependence in Eq. (9) and Eq. (10) above is equivalent to:

p(B � ASC)\p(B � C) (positive conditional correlation) (13)

p(B � ASC)Bp(B � C) (negative conditional correlation) (14)

These two interesting relations we have arrived at will be used as the conceptual
base of our theory below. Like the events B and A, also the reference event C
conditional on which the independence and dependence relationships were studied
in the formulas above, is in every real-life situation a more or less complex class,
e.g. the calss of diabetics, of warm summer days, of leucocytes, of cigarette
smokers, etc. Of methodological and mnemonic reasons we will want to hold this
reference event linguistically constant throughout. We will therefore in neutral
terms refer to it as population, also called reference class, background context,
causal field, propensity field, and the like, and denoted by the variable X through-
out.

Definition 0. An event A in a population X is
1. positi6ely probabilistically rele6ant to an event B if and only if p(B � XSA)\
p(B � X),
2. negati6ely probabilistically rele6ant to an event B if and only if p(B � XSA)B
p(B � X),
3. probabilistically irrele6ant to an event B if and only iff p(B � XSA)=p(B � X).

In part 1 of this triple definition, the addition of event A to event X raises the
probability of B. In part 2, the addition of event A to event X lowers the probability
of B. In part 3 nothing happens by adding A to X. Note that these notions of
probabilistic relevance we have obtained are three-place predicates of the structure:

is–positively–probabilistically–relevant(A, B, X),
is–negatively–probabilistically–relevant(A, B, X),
is–probabilistically–irrelevant(A, B, X).

For instance, from the epidemiologic information given in Eq. (1) above we can
infer, using the equivalence between Eq. (9) and Eq. (2), the following probabilistic
relevance information on the relationship between Chlamydia and coronary heart
disease:

p(chd � non-diabeticsSchlamydia)\p(chd � non-diabetics), (15)

where B=chd; X=non-diabetics; A=chlamydia, i.e. p(B � XSA)\p(B � X).
It says that within the population of non-diabetics, Chlamydia pneumoniae

infection is positively probabilistically relevant to coronary heart disease. It is
beyond any doubt that a probabilistic relevance information of this kind is
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predicti6ely valuable in that one is allowed to view the Chlamydia infection as a
prognostically unfavorable factor in non-diabetics, usually called a ‘risk factor’
because of the undesirability of the effect. However, that does not yet mean that the
probabilistic relevance information is also causally significant. The rapidly falling of
barometric reading on warm summer days is positively probabilistically relevant to
the subsequent storm, and thus predictively informative. But, it does not cause the
storm. Although we will be willing to use the barometric reading as an indicator, we
will not want to try to prevent or to produce storm by manipulating this indicator.
Like this prognostic relevance cum causal irrelevance situation where a third factor is
causally operative behind both the barometer and the storm, i.e. the drop in
atmospheric pressure, it is also possible that there is another, common factor
operating behind Chlamydia infection and coronary heart disease. We will try to find
a solution to this problem below.

4.2. Spurious and quasi-paradoxical etiologic correlations

Let there be a positive probabilistic relevance between two events A and B within
a particular population X as in Eq. (15) above, i.e.

p(B � XSA)\p(B � X). (16)

It is possible that this probabilistic relevance of A to B will vanish if an additional
event C is introduced into the context, i.e.

p(B � XSASC)=p(B � XSC). (17)

The previously positive correlation between A and B no longer exists in the presence
of the new factor C which is equally able to bring about B in the absence of A
(right-hand side). The question therefore arises if it was only a spurious correlation.
An example is provided by the well-known view that within the population of
non-diabetics smoking is a risk factor for coronary heart disease, and that means that
it raises the probability of this disease:

p(chd � non-diabeticsSsmoking)\p(chd � non-diabetics). (18)

However, according to the findings reported in a recent epidemiologic study on the
association of Chlamydia pneumoniae infection and acute coronary heart disease
events [9], following probabilistic relevance relationships must be supposed:4

4 See, for example, [9]: ‘‘It was found that the prevalence of elevated chlamydial antibodies at baseline
was higher in non-diabetic subjects who had serious coronary heart disease events dring the follow-up than
subjects without coronary heart disease events (32 vs. 15%, relative risk 2.56 P=0.013) in East Finland.
In non-diabetic subjects in West Finland we did not find this association. The association between C.
pneumoniae antibodies and coronary heart disease events did not markedly change after controlling for
other risk factors for coronary heart disease (OR 2.44, P=0.055) in non-diabetic subjects living in eastern
Finland’’ (ibid. p. 682).

‘‘The association between elevated chlamydial antibodies and incident coronary heart disease events
before controlling for other risk factors for coronary heart disease was statistically significant… This
ascociation remained similar after controlling for age, gender, and smoking’’ (ibid., p. 685).

‘‘We did not find any association between chlamydial antibodies and coronary heart disease events in
diabetic patients from either East or West Finland. A possible explanation for the difference between
diabetic and non-diabetic subjects could be that diabetes increases the risk for coronary heart disease events
so much that it masks the effects of other, weak risk factors from coronary heart disease’’ (ibid., p. 686).
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p(chd � non-diabeticsSsmokingSchlamydia)

=p(chd � non-diabeticsSchlamydia), (19)

p(chd � non-diabeticsSchlamydia)\p(chd � non-diabetics), (20)

p(chd � diabeticsSchlamydia)=p(chd � diabetics). (21)

Eqs. (18) and (19) show that the positive probabilistic relevance of smoking to
coronary heart disease in the population of non-diabetics, present in Eq. (18),
disappears when Chlamydia enters the scene (Eq. (19)). Thus, the new factor
Chlamydia seems to degrade smoking to a spurious one. Moreover, according to
Eq. (20) Chlamydia is with respect to non-diabetics positively probabilistically
relevant to coronary heart disease. But once again, Eq. (19) demonstrates that
Chlamydia’s relevance to heart disease is not changed by smoking when added to
(left-hand side). Someone may therefore suppose that in the presence of Chlamydia,
smoking loses the potential etiologic role it had been assigned to until now. On the
other hand, according to Eq. (21), Chlamydia is with respect to diabetics probabilis-
tically irrelevant to coronary heart disease.

The first lesson we learn from these examples is the evidence that probabilistic
relevance is always relative to a particular population (reference class, background
context, propensity field, etc.). That means, however, that if we change the
background context relative to which the relevance of Chlamydia to coronary heart
disease is measured, maybe the positive correlation will vanish as it happened to
smoking above.

It is not a difficult task to change the background context of an etiologic research
to see what will happen. Just divide the reference population X into n\1 disjoint
subpopulations X1, X2,…, Xn and inquire into the probabilistic relevance that factor
A within each one of them has to factor B, i.e. ask

p(B � XiSA) ? p(B � Xi) with 15 i5n (22)

where the question mark is a variable for the relations = , \ , and B . What can
happen is a collapse of the initial probabilistic relevance that A had to B within the
undivided population. Positive relevance may become negative relevance or irrele-
vance, irrelevance can become positive or negative, and negative relevance can
become positive, etc. (See Eq. (20) and Eq. (21) above.) This dynamics of the
correlations by changing the reference population, known as Simpson’s paradox
[24], is due to the circumstance that within any of the subpopulations Xi, factor A
may be correlated with a particular, Xi-local factor Ci which modifies the effect B
in a particular manner (see Fig. 2).5

Fig. 2 illustrates that whenever one or more additional correlations enter the
field, the etiologic situation between A and B may become increasingly opaque and
hopeless. Something that is a risk factor in class Xi may surprisingly appear as a
preventive factor in the new class Xj. But we will see below that this situation is not

5 Simpson ([24], p. 240 f.) gives an interesting and amusing example that cannot be discussed here.



K. Sadegh-Zadeh / Artificial Intelligence in Medicine 12 (1998) 227–270 241

Fig. 2. Event A occurring in different contexts Xi where a particular local factor Ci may be present
modifying effect B in a specific manner.

a paradoxical one at all as it has been thus diagnosed by Simpson and named after
him. It is a commonplace that a particular drug, for example, that is used as a
remedy in a diseased group may develop an excellent overall effect against this
disease, while having adverse effects in the presence of a particular, additional
disease called ’contra-indication’. This example shows that in an inhomogeneous
reference class X almost anything is possible. An event A in a subpopulation of
class X may raise the probability of an event B while lowering it in another
subpopulation. Some philosophers of causality have thus come to the conclusion
that a cause need not be something that raises the probability of its effect. It may
lower that probability as well, they say. Their strange discussion on this exotic view
followed an example provided by Germund Hesslow on the thrombogenic effect of
oral contraceptives [4]. His argument runs as follows:

‘‘It has been claimed, e.g. that contraceptive pills (C) can cause thrombosis (T)…
But pregnancy can also cause thrombosis, and C lowers the probability of preg-
nancy. I do not know the value of p(T) and p(T � C) but it seems possible that
p(T � C)Bp(T), and in a population which lacked other contraceptives this would
appear a likely situation. Be that as it may, the point remains: it is entirely possible
that a cause should lower the probability of its effect’’ ([4], p. 291).

It will be shown below that the conceptual base of this reasoning is faulty and its
conclusion cannot be accepted [20]. We must have the opportunity of relying upon
the modality of causes in order to be able to manipulate them therapeutically and
preventively. A cause therefore has to be definitely positive or negative. Tertium
non datur. An equivocal, ‘mixed cause’ which occasionally raises the probability of
its effect and at other times lowers it, is not a cause if it exists at all. For example,
we cannot allow for Chlamydia to be a cause of coronary heart disease on the one
hand, and a protective factor for the same disease in the same group, on the other.
The action-theoretic clarity we need for differential indication decisions in clinical
practice and preventive medicine requires that causal structures in etiology should
be unanimous.
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4.3. Causal structures

A causal structure consisting of causally associated events will be construed as a
special, set-theoretical extension of a probability space. To prevent misunderstand-
ings, let us therefore negotiate our notion of probability space.

The class of generic events among which causal associations are being analyzed
in etiologic research, must be known and designed before. In a research setting, for
instance, where someone is inquiring into whether or not cigarette smoking has any
causal relevance to myocardial infarction, she is not allowed to tell us afterwards
that thanks to her investigation she had discovered Chlamydia pneumoniae infec-
tion having a causal relevance to myocardial infarction. For this infection did not
belong to the e6ent space she was considering. What we will need in our discussion
below first of all, therefore, is the formal characterization of the event space.

Any inquiry, observation, analysis, experiment and the like intended to be
performed will be called a random experiment. For example, we would want to find
out if a particular patient is suffering from gastritis, or we would want to toss a dice
twice to see what the sum of the two subsequent faces will be. Such an experiment’s
being a random one means that we do not know before what will actually happen.
But of course we know before what will happen at all. For relative to a particular
logic L, we can L-logically calculate the set of all possible outcomes of our
experiment. Regarding our patient, for example, and relative to classical logic the
set of all possible outcomes is {gastritis is present, gastritis is not present}. Such a
set of all classical-logically possible outcomes of a random experiment will be
referred to as the sample space and will be symbolized by V.

Let E be an algebra of sets on the sample space V, i.e. E is a family of subsets
of V, it also includes V and is closed under complementation and union. That
means that if A is in E, its complement A( is also in E, and if A and B are in E, their
union A@B is also in E. The set E is referred to as event space or e6ent algebra,
and its elements are called the events proper. For instance, our random experiment
which we will frequently refer to below may be this: we want to know if our patient
above is suffering from any of the two diseases ‘Chlamydia pneumoniae infection’
and ‘coronary heart disease’. In this case we will have the following sample space
and event algebra. As the latter one is too large, only a minor part of it will be
displayed:

V={Chlamydia pneumoniae infection is present, Chlamydia pneumoniae infec-
tion is not present, coronary heart disease occurs, coronary heart disease
does not occur}.

E={{Chlamydia pneumoniae infection is present}, {Chlamydia pneumoniae
infection is not present},…, {Chlamydia pneumoniae infection is
present}@{coronary heart disease occurs},…, {Chlamydia pneumoniae
infection is present}S{coronary heart disease does not occur},…, V, Ø},

or equivalently:
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E={{chlamydia}, {chlamydia}, {chd}, {chd}, {chlamydia}@{chd},
{chlamydia}@{chd}, {chlamydia}@{chd}, {chlamydia}S{chd},
{chlamydia}S{chd}, {chlamydia}S{chd},…, V, Ø}.

Finally, let us now add into the frame �V, E� we have constructed thus far a
function p which maps the event algebra E into the real interval [0, 1]. The triplet
�V, E, p� we obtain in this fashion is a finite probability space if it satisfies the
Kolmogorov axioms.6

We are now ready to demonstrate how a probability space �V, E, p� can be
extended to a probabilistic causal structure that may be used in etiology as a
methodological ground in searching for causes of clinical events. We should remind
at the outset that ‘‘Too much philosophical ink has been spilled on causality since
Aristotle. But the problems remain with us as they were before him. The elimina-
tion of the notion of causality and all of its derivatives from the human language
is probably the only satisfactory solution to these problems …’’ ([18], p. 201). An
elimination of that kind certainly will not happen, however. So we have still to seek
for another solution. Half of the solution would come from the correct diagnosis of
the problems. In my view, the basic one of them generating most of the difficulties
lies in the following, widespread misunderstanding.

It is commonly assumed that causation is a two-place relation of the kind ‘A
causes B’, e.g. HIV infection causes AIDS. However, the perpetual history of the
fruitless debates on causality demonstrates that this belief must be logically
defective. We should first of all observe that whatever else causation may be, it rests
on the interaction of causes with their background contexts. What is a cause in a
particular context, e.g. HIV in man, may not be a cause in another context, e.g.
HIV in ants. One can therefore not expect of causes any contextual impartiality
that would enable something to be a cause everywhere if it is one somewhere. The
contextual relativity of their causal role and significance, their ‘context sensitivity’
so to speak, must be taken into account by constructing an appropriate syntax for
causal language, a syntax that makes a reasonable causal semantics possible in that
it contextualizes causes. For it may be, for example, that measles virus causes
measles within a human population which is not inoculated against measles, while
it doesn’t do so in an inoculated population. We thus obtain the new verb ‘causes’
as a three-place predicate: ‘A causes B within X’,

causes(A, B, X),

where A is the cause event, B is the effect event, and X is a population within which
the relation between A and B is being considered. For instance:

6 Definition: A structure �V, E, p� is a probability space if V is a sample space, E is an algebra of sets
on V, and p is a function from E to [0, 1] such that (1) p(A)]0 for every A�E; (2) p(V)=1; and (3)
if ASB=Ø, then p(A@B)=p(A)+p(B). Kolmogorov axioms are the latter three clauses 1–3. A
probability space �V, E, p� of the kind just defined is according to Axiom 3 a finitely additive one. We
will not be concerned with infinite probability spaces. With reference to footnote 3 we can now state
what we understand by ‘probability’. Probability is a set-function as defined above: a normed, additive
measure on E.
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causes(measles–virus, measles, non-inoculated),
not causes(measles–virus, measles, inoculated),
not causes(measles–virus, measles, ants).

This is the simple, syntactic reason why it doesn’t make any sense to ask questions
of the form ‘does A cause B?’, for example, ‘does measles virus cause measles?’. We
should always refer to a particular reference class X as above and put our question
accordingly: ‘does Chlamydia pneumoniae infection cause coronary heart disease
within the reference class X?’, e.g.:

causes(chlamydia, chd, human)???
causes(chlamydia, chd, non-diabetics)???
causes(smoking, lung–cancer, teenangers)???
causes(helicobacter–pylori, gastric–ulcer, female)???
causes(oedipus–complex, gastric–ulcer, psychoanalysts)???
causes(anopheles, malaria, sickle–cell–carriers)???

That means, construe causation as a three-place relation of the structure ‘caus-
es(A, B, X)’, to be read, for example, in one of the following ways:

A causes B within the background context X,
A causes B in the population X,
A causes B with respect to X,
A causes B conditional on X,
B is caused by A with respect to X,
B is caused by A relative to X,

and the like. And by so doing you have resolved the basic problem of causality and
etiology alluded to above! We will do, with some supplements, just that.

We will in the following consider causes and effects as generic events whose
individual instances occur at particular moments or periods of time. For this
purpose we will use a discrete time interval [t, t ’] whose elements are points of time
and linearly ordered according to the binary relation Bof precedence. The short-
hand statement ‘tiB tj ’ means that the time point ti is earlier than tj, and ‘ti5 tj ’ says
that ti is earlier than or simultaneous with tj. These points of time will serve as the
times of occurrence of our events. We will not complicate the temporal aspect of
our analysis, though a detailed consideration of terms such as ‘occurrence’,
‘duration’, ‘overlapping occurrence’ and ‘partial simultaneity’ would be desirable
and beneficial (for details, see [20]). If A is an event occurring at time ti, we write
Ati

to indicate by the subscript ti its moment of occurrence. The phrase ‘iff’
abbreviates the biconditional connective ‘if and only if’.

Definition 1 below introduces our basic concept everything else will be built
upon. An intuitive understanding of this base is this: let there be a particular
probability space, such as tossing a dice, whose events successively occur during a
particular period of time. Thanks to the mathematical laws of probability theory we
know of course in advance the probabilities of these events presupposing they are
independent of one another. But among the actual occurrences of this particular
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probability space there may be events which may prove probabilistically relevant to
some later events, thus disproving our prior independence assumption. In such a
case of obvious difference between our actual observation and mathematical truth
we are allowed to consider the whole contraption as something that may accommo-
date a relation of causation between its earlier and later events, i.e as something
that possibly is a causal structure.

Definition 1. j is a potential causal structure iff there are V, E, p, T, At 1
, Bt 2

and
X such that

1. j=�V, E, p, T, At 1
, Bt 2

, X�,
2. �V, E, p� is a probability space,
3. T is a discrete time interval,
4. At 1

, Bt 2
and X are non-empty elements of E,

5. t1, t2�T such that t1B t2,
6. p(Bt 2

� XSAt 1
)"p(Bt 2

� X).

A probability space thus develops into a potential causal structure if there is an
earlier event type At 1

in the event algebra which according to axiom 6 and relative
to the reference event type X, is probabilistically relevant to the later event type Bt 2

.
Thanks to the inequality relation in axiom 6, the probabilistic relevance of At 1

to
Bt 2

may be positive or negative. In either case, the event At 1
gives the prima facie

impression to be causally relevant to Bt 2
within X because it changes the probability

of Bt 2
’s occurrence.

For instance, our familiar example of Chlamydia infection and coronary heart
disease within the population of non-diabetics together with all ingredients (sample
space, event algebra, etc.) already constructed in the previous sections, and the
following finding quoted as Eq. (20) in Section 4.2.:

p(chdt 2
� non-diabeticsSchlamydiat 1

)\p(chdt 2
� non-diabetics) (23)

yield a potential causal structure of the kind defined above if the clinical events in
this finding are supplied with an appropriate time axis to guarantee that Chlamydia
infection precedes coronary heart disease as required in Definition 1.

In our theory of etiology at least two types of potential causal structure are
distinguished. In the first type, written:

�V, E, p, T, At1
, Bt2

, X�, (24)

as in Definition 1, the potential cause-effect events (At 1
, Bt 2

) are elements of the
event algebra E, i.e. elementary generic events such as ‘Chlamydia infection occurs’
and ‘coronary heart disease occurs’, or any combinations of them. A potential
causal structure of this type should therefore be termed elementary. In the second
type, written:

�V, E, p, T, p1, p2, X�, (25)

the potential cause-effect component (p1, p2) is a more complex one. Each pi may
be a random function or a more or less complex partition like p1={Chlamydia
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infection occurs, Chlamydia infection does not occur} and p2={coronary heart
disease occurs, coronary heart disease does not occur}, and thus a subset of the
event algebra E. Due to page limitations, I will confine myself to elementary
structures of the kind Eq. (24) only and will not be concerned with the second,
complex kinds of causal structures, though they are more powerful, axiomatic
extensions of the ones considered. For this reason, the discriminating affix ’elemen-
tary’ that we should have used in the name of the basic, potential causal structure
constructed in Definition 1 was omitted (for details, see [20]).

The next definition determines that an earlier occurrence is a potential positive or
negative cause of a later occurrence within a particular population if the earlier
event is positively or negatively probabilistically relevant to the later event, respec-
tively.

Definition 2. If �V, E, p, T, At 1
, Bt 2

, X� is a potential causal structure, then
1. At 1

is a potential positi6e cause of Bt 2
within X iff p(Bt 2

� XSAt 1
)\p(Bt 2

� X),
2. At 1

is a potential negati6e cause of Bt 2
within X iff p(Bt 2

� XSAt 1
)Bp(Bt 2

� X).

In our example potential causal structure above, Chlamydia pneumoniae infection
is due to Eq. (23) a potential positive cause of coronary heart disease within
non-diabetics if it precedes the heart disease. On the other hand, because of the
following finding

p(chd � diabeticsSchlamydia)=p(chd � diabetics),

which we had already quoted as Eq. (21) in Section 4.2, we are not allowed to
suppose that Chlamydia infection also plays a comparable, positive causal role in
the population of diabetics. Obviously it doesn’t do so. In this population it is a
causally irrelevant happening, ‘an innocent bystander’ as Muhlestein et al. would
say ([10], p. 1555).

Another interesting example demonstrating both kinds of potential cause, posi-
tive and negative ones, can be drawn from a recent study on the association of
C-reactive protein, myocardial infarction, and the reduction of the latter by aspirin
[12]. In this long-term study known as The Physicians’ Health Study, in a period of
over 13 years (1982–1995) a total of 22.071 US male physicians 40–84 years of age
with no history of myocardial infarction, stroke, or cancer were assigned to
different groups of a randomized, placebo-controlled trial of aspirin and beta
carotene in the primary prevention of cardiovascular disease and cancer.7 The

7 Inflammation processes in heart and brain arteries are currently viewed as important etiologic factors
in the pathogenesis of coronary heart disease, stroke, and related health catastrophes. As we have
already pointed to, microorganisms such as Chlamydia pneumoniae, Helicobacter pylori, etc. are
therefore being studied as potential agents of the inflammation. C-reactive protein is a marker for
systemic inflammation. Elevated plasma concentrations of C-reactive protein are known to be associated
with acute myocardial ischemia and infarction. The present, major study we refer to [12] has analyzed,
among many other things, the association of C-reactive protein and the diseases mentioned on the one
hand, and the effect of the antiinflammatory agent aspirin within this pathogenetic background context,
on the other.
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authors report, among many other findings, that elevated plasma C-reactive protein
concentration (as an indicator of systemic inflammation) was statistically signifi-
cantly correlated with myocardial infarction and stroke. These risks were stable
over long periods, were not modified by smoking and lipid-related or non-lipid
related risk factors. The use of aspirin was significantly associated with reductions
in the risk of myocardial infarction [ibid, pp. 973, 977]. ‘‘The aspirin component of
the study was terminated early, on 25 January, 1988, primarily because of a
statistically extreme 4 percent reduction in the risk of a first infarction in the aspirin
group’’ [ibid., p. 974]. To interpret these findings within our framework, let us first
introduce some shorthand notations. We write:

myocardial infarction occursinfarction for
for C-reactive protein level is elevatedc-reactive
forsmoking the patient is a smoker
for hypercholesterolemia is presentcholesterol
foraspirin aspirin is used

the underlying population Xformen

We can conclude from the study quoted above that:

p(infarction � menSc-reactive)\p(infarction � men), (26)

p(infarction � menSc-reactiveSaspirin)Bp(infarction � menSc-reactive),
(27)

p(infarction � menSc-reactiveSsmoking)=p(infarction � menSc-reactive),
(28)

p(infarction � menSc-reactiveScholesterol)=p(infarction � menSc-reactive).
(29)

Each of the Eqs. (26) and (27) yields a potential causal structure when properly
supplemented by the formal accessories required by Definition 1 above. In the first
one of these causal structures including Eq. (26), C-reactive protein seems to have
a positive causal impact on the occurrence of myocardial infarction. In the second
causal structure including Eq. (27), that impact is reversed by aspirin. One may thus
suppose that in the reference population of men, C-reactive protein is a potential
positive cause of myocardial infarction (Eq. (26)), and that within the population of
men ha6ing ele6ated C-reacti6e protein (left-hand side of Eq. (27)), aspirin is a
potential negative cause of myocardial infarction. Neither smoking nor cholesterol
is able to change the potential causal impact of C-reactive protein on myocardial
infarction in men (Eqs. (28) and (29)). Let us see if the possibly causative roles
reported can be saved if we continue our methodological considerations.

A potential causal structure does not provide genuine causes yet, but merely
potential causes (see Definition 2). Genuine causes require us to ensure that the
events appearing as potential causes are not spurious ones. To this end we will
propose a notion of spuriousness with the following rationale behind it: a potential
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cause is a spurious cause if it is rendered probabilistically irrelevant by an earlier
occurrence. That is, if a potential cause At 1

(e.g. falling barometer reading) is
preceded by another event Ct (decreasing air pressure) that generates the same
effect Bt 2

(storm) to the same extent as well, then the later potential cause At 1
is a

spurious cause. It cannot be viewed as a genuine cause of the effect Bt 2
and must

be removed from the list of potential causes of this effect. Otherwise, we will be
accused of the barometer-causes-storm fallacy.

To keep the following definition of this notion readable, we mention the notion
of a partition separately. A partition p of the reference event X is a set {C1,…, Cn}
of n]2 non-empty, pairwise disjoint events Ci such that the union of all XSCi is
X. For example, a particular partition of the population men examined in the
above-mentioned aspirin trial is provided by {{aspirin is used}, {aspirin is not
used}}.

Definition 3. If �V, E, p, T, At 1
, Bt 2

, X� is a potential causal structure, then it is
a spurious causal structure iff there are t�T and a partition pt¤E of X such that for
all events Ct�pt

1. tB t1,
2. p(Bt 2

� XSAt 1
SCt)=p(Bt 2

� XSCt).

As axiom 2 of this definition demonstrates, each of the earlier events Ct of the
partition does without At 1

as well and thus disqualifies At 1
as a potential cause of

Bt 2
. If a structure �V, E, p, T, At 1

, Bt 2
, X� is a spurious causal structure, At 1

is
called a spurious cause of Bt 2

within X. Let us return to our Chlamydia example in
non-diabetics: should etiologic research be able to show in the near future that there
is a partition, e.g. {{coronary wall lesion occurs}, {coronary wall lesion does not
occur}}, such that each of its events (Ct) satisfies axiom 2 of Definition 3 if it
precedes the infection by Chlamydia (event At 1

),

p(chdt 2
� non-diabeticsSwall-lesiontSchlamydiat 1

)

=p(chdt 2
� non-diabeticsSwall-lesiont)

p(chdt 2
� non-diabeticsSno-wall-lesiontSchlamydiat 1

)

=p(chdt 2
� non-diabeticsSno-wall-lesiont)

then we will have reason to view Chlamydia as a spurious cause of coronary heart
disease in non-diabetics (event X). Meanwhile we will continue to believe the
current epidemiologic hypothesis until we get proof to the contrary. In addition, we
don’t have yet any reason to believe that smoking and other classic risk factors
have become spurious causes of coronary heart disease. Although such a prima
facie impression may be evoked by the epidemiologic findings we have already
quoted above:

p(chd � non-diabeticsSsmokingSchlamydia)

=p(chd � non-diabeticsSchlamydia),
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p(infarction � menSsmokingSc-reactive)=p(infarction � menSc-reactive),

p(infarction � menScholesterolSc-reactive)=p(infarction � menSc-reactive),

these findings do not provide us with a partition of the respective reference class to
judge about the spuriousness of those risk factors. This research gap is especially
awkward regarding the prima facie, potential causal relevance of C-reactive protein
to myocardial infarction (Eq. (26)). The available biochemical background knowl-
edge on the nature and role of C-reactive protein in the organism provides
convincing evidence that it must be a spurious cause of myocardial infarction, i.e.
a mere indicator like falling barometer reading, fever, pain, and erythrocyte
sedimentation rate. As a non-specific, systemic reaction to infection, tissue injury
and necrosis, C-reactive protein has a multitude of agents behind it each of which
may prove to be a preceding, common cause of both its increase and myocardial
infarction. The life-saving merit of aspirin is not due to a conceivable lowering of
C-reactive protein levels per se, but due to its anticoagulatory and presumably
antiinflammatory effects, an idea which indirectly corroborates the Chlamydia and
other infection hypotheses. A detailed discussion of this common cause aspect in
etiology is behind the scope of this paper (cf. [20]). Though it may be pointed out
that in our theory there is a direct relationship between common causes, non-spe-
cificity, and spuriousness. The spuriousness of C-reactive protein is provable in that
context. Its elevation prior to coronary heart disease events thus becomes a kind of
barometer reading having air pressure changes behind it.

Definition 4. If �V, E, p, T, At 1
, Bt 2

, X� is a potential causal structure and is not
a spurious one, then

1. At 1
is a positi6e cause of Bt 2

within X iff p(Bt 2
� XSAt 1

)\p(Bt 2
� X),

2. At 1
is a negati6e cause of Bt 2

within X iff p(Bt 2
� XSAt 1

)Bp(Bt 2
� X).

Relying upon the available evidence that our example potential causal structures
quoted above are not spurious ones, we will presume that: (1) Chlamydia pneumo-
niae infection is a positive cause of coronary heart disease within non-diabetics; and
(2) aspirin is a negative cause of myocardial infarction in men with raised
C-reactive protein levels.

The fragments of our causal language constructed thus far indicate that it is our
plan to distinguish positi6e and negati6e causes of different types. Due to space
limitations, however, we will in the following concentrate on the positive part only
and will not introduce extra definitions and concepts of negative causality. They are
more or less formal analogues of positive ones (for details, see [20]).

Definition 5. If �V, E, p, T, At 1
, Bt 2

, X� is a potential causal structure, then it is
a causal structure iff At 1

is a positi6e or a negati6e cause of Bt 2
within X. In the

former case, the structure is referred to as a positi6e causal structure, written
+�V, E, p, T, At 1

, Bt 2
, X�, in the latter case as a negative causal structure, written

−�V, E, p, T, At 1
, Bt 2

, X�. In a positive causal structure we say, ‘At 1
causes Bt 2

within X’. In a negative causal structure we say, ‘At 1
discauses Bt 2

within X’.
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For example, let the temporally extended probability space �V, E, p, T� be an
appropriate frame for our purposes, then the following two sets are causal
structures:

+�V, E, p, T, chlamydiat 1
, chdt 2

, non-diabetics�,
-�V, E, p, T, aspirint 1

, infarctiont 2
, menSc-reactive�.

In the former causal structure, Chlamydia pneumoniae infection causes coronary
heart disease in non-diabetics. In the latter, aspirin discauses myocardial infarction
in men with increased C-reactive protein.8

Definition 6. If �V, E, p, T, At 1
, Bt 2

, X� and �V, E, p, T, Ct, Bt 2
, X� are causal

structures, then At 1
and Ct are interacti6e causes of Bt 2

iff

1. p(Bt 2
� XSAt 1

SCt)"p(Bt 2
� XSCt),

2. p(Bt 2
� XSAt 1

SCt)"p(Bt 2
� XSAt 1

).

That means that two causes At 1
and Ct of an effect Bt 2

are interactive if their joint
occurrence within X has a different probabilistic relevance to the effect than their
separate occurrence. ‘Joint occurrence’ does not mean that they must occur
simultaneously, but merely that both of them, At 1

SCt, occur. In Definition 6
therefore, the occurrence times t and t1 have been left indefinite. They may or may
not be distinct. For instance, suppose that in addition to the finding:

p(chdt 2
� non-diabeticsSchlamydiat 1

)\p(chdt 2
� non-diabetics)

already quoted above as Eq. (23), we had also available the following, plausible
probabilistic relevances that we may extrapolate from the aspirin trial:

p(chdt 2
� non-diabeticsSaspirint)Bp(chdt 2

� non-diabetics),
p(chdt 2

� non-diabeticsSchlamydiat 1
Saspirint)

\p(chdt 2
� non-diabeticsSaspirint),

p(chdt 2
� non-diabeticsSchlamydiat 1

Saspirint)

Bp(chdt 2
� non-diabeticsSchlamydiat 1

).

We would then be allowed to conclude from this information that Chlamydia and
aspirin are interactive causes of coronary heart disease in non-diabetics, provided
they are not rendered spurious. Depending on whether the joint occurrence of two
interactive causes exceeds or falls short of their separate probabilistic relevance to
the effect, positive and negative interaction may be distinguished. Our hypothetical
example above demonstrates a negative interaction: aspirin lowers, and even
reverses, Chlamydia’s causal impact on coronary heart disease within non-diabetics.
Positively interacting causes may be called synergistic causes or factors. Negatively
interacting ones may be termed antagonistic causes or factors.

8 ‘To discause’ is a new verb that we have just created for negative causation. Here is an additional
example: all efficacious preventive measures discause the diseases against which they are used.
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If At 1
and Ct are two interactive causes of an effect Bt 2

such that At 1
precedes Ct

and causes or discauses it, then Ct is an intermediate cause of Bt 2
, or an intermedi-

ary for short (Fig. 3a). There may be many intermediaries between a particular
cause At 1

and effect Bt 2
. This is usually the case, for example, in contagious

diseases. A pseudoproblem arises whenever the earlier cause At 1
has opposing

causal tendencies for intermediaries following it, such as, for example, causing Ct

and discausing Dt% (Fig. 3b). In this case there are two seemingly conflicting paths
between At 1

and Bt 2
, an excitatory and an inhibitory one. An example is provided

by Hesslow’s contraceptive pills quoted in Section 4.2 above which he thinks may
raise and lower the probability of thrombosis at the same time. But the situation is
causal-analytically not so awkward as he believes. In Fig. 3b, oral contraceptives
(At 1

) in the population level, not in the individual female, cause thrombosis by
triggering some thrombogenic intermediaries (Ct) over the left path, and discause
thrombosis by preventing pregnancy (Dt%) over the right path. The overall statistical
outcome yields a new probability value for thrombogenic relevance of Hesslow’s
pills in an entirely distinct causal structure. This value may be different than their
thrombogenic relevance within other background contexts such as, for example:

p(thrombosis � female)=r1,
p(thrombosis � femaleSpregnant)=r2,
p(thrombosis � femaleSpregnant)=r3,
p(thrombosis � femaleSpregnantSpill)=r4,
p(thrombosis � femaleSpregnantSpill)=r5,
p(thrombosis � femaleSpregnantSpill)=r6,
p(thrombosis � femaleSpill)=r7,
p(thrombosis � femaleSdiabeticsSpill)=r8,
p(thrombosis � femaleSaspirinSpill)=r9,
p(thrombosis � femaleSdiabeticsSaspirinSpill)=r10,

etc. None of these values ri will equal another one. The strength of causal relevance
a factor has to another factor is relative to the causal structures within which it

Fig. 3. Intermediaries between At 1
and Bt 2

. Part 3b displays two seemingly conflicting paths between At 1

and Bt 2
.
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operates, or equivalently, within which it is being considered. There is no such thing
as the absolute, positive or negative, causal relevance of something to something
else. This is the essence of our relativistic theory of etiology.9

Indirect causes, and direct ones, are to be distinguished from intermediate causes.
They cannot be defined here (for details and other types of causes, see [20]). A
particular kind of cause, however, i.e. the notion of sufficient cause, must be
mentioned to show that deterministic causation is also covered by the probabilistic
approach we are presenting here. A sufficient cause is simply the limiting case where
the probability of its effect reaches 1:

Definition 7. If �V, E, p, T, At 1
, Bt 2

, X� is a causal structure, then XSAt 1
is a

sufficient cause of Bt 2
iff p(Bt 2

� XSAt 1
)=1.

A deterministic causal law, as explicated in Section 3 above, may now be
rewritten as a causal structure with the limiting probability

p(Bt � YSAt 1
SAt 2

S ··· SAtn
)=1 (30)

such that n]1 and all partial causes Y, At 1
,…, Atn

are interactive. Mackie’s causes
as INUS conditions quoted in Section 3 may be interpreted as Ati

s of causal
structures with limiting probabilities such as Eq. (30). Ideal, causal structures of this
kind are rare enough. And nowhere else we have sufficient causes and thus INUS
conditions available, though probabilistic causal structures and causes abound in
the world. Causes therefore are in general not INUS conditions. We have to put up
with non-deterministic etiology.

4.4. Quantitati6e and comparati6e causal structures

Among its numerous methodological advantages the framework sketched above
also entails the virtue that it enables us in different ways to view and treat the
causal impact of causes as a measurable quantity. We will choose the most obvious
and simple measurement, though there are also competing ones (cf. [20]).

To measure the causal strength of causes, let us introduce an appropriate
terminology and syntax. We consider all of the following expressions as synonyms:
causal strength, causal impact, causal relevance, causal influence, causal support,
causal significance, causal propensity, causal contribution, degree of causation. We
prefer the term causal rele6ance and use it in the following manner: ‘the causal
relevance of A to B within X is r ’, symbolized by cr(A, B, X)=r and defined as
follows:

Definition 8. If �V, E, p, T, At 1
, Bt 2

, X� is a causal structure, then
cr(At 1

, Bt 2
, X)=r iff r=p(Bt 2

� XSAt 1
)−p(Bt 2

� X).

9 It says that the notion of cause is not an absolute, unconditional one such as causes(A, B), but a
conditional one such as our familiar diction causes(A, B, X) that we have already read as ‘A causes B
conditional on X’. Accordingly, the theory sketched in this paper is a theory of conditional casuality [20].
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That means that the causal relevance of an event to another one within a
particular population is just the extent to which it raises or lowers the probability
of the occurrence of the latter within this population, given a causal structure as
introduced in Definition 5. For example,

cr(chlamydia, chd, non-diabetics)

=p(chd � non-diabeticsSchlamydia)−p(chd � non-diabetics).

Causal relevance, cr, is thus a three-place, numerical function. Depending on the
magnitudes of the two underlying probabilities whose difference yields cr(A, B, X),
the causal relevance function cr assumes values in the real interval [−1, +1]. For
instance,

cr(chlamydia, chd, non-diabetics)=0.25
cr(chlamydia, chd, diabetics)=0
cr(smoking, chd, non-diabeticsSchlamydia)=0
cr(aspirin, infarction, menSc-reactive)= −0.4.

The first and the last one of these quantities are fictitious as I was unable to extract
accurate base probabilities from the literature sources referred to previously [9,12].
The examples and definitions demonstrate that:

(null-causing)causal irrelevance amounts to cr(A, B, X)$0
cr(A, B, X)\0positive causal relevance is (causing)

(discausing, preventing)cr(A, B, X)B0negative causal relevance is
cr(A, B, X)=1maximum positive causal relevance is (maximum efficiency)
cr(A, B, X)=−1maximum negative causal relevance is (maximum prevention)

It goes without saying that at least due to its range [−1, +1], the causal relevance
function cr is not a probability, possibility, necessity, belief, or plausibility. It is
simply a normed, conditional measure over the event algebra. This becomes evident
from the following definition which in its axiom 5 also includes Definition 8. This
expository definition that we will not use here displays a genuine space in mathe-
matical sense. It demonstrates how our theory of causation may be extended
stepwise [20]. The intuitive idea behind it is that triple chunks of the event algebra
E, symbolized by E1, E2, E3, may constitute a complex of causal structures that
yields a measurable space if a causal relevance measure is available.

Definition 9. j is a causal space iff there are V, E, p, T, E1, E2, E3, and cr such
that

1. j=�V, E, p, T, E1, E2, E3, cr�,
2. E1, E2, E3¤E,
3. For every At 1

�E1 and Bt 2
�E2 there is an X�E3 such that

�V, E, p, T, At 1
, Bt 2

, X� is a causal structure,
4. cr: E×E×E� [−1, +1],
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5. If �V, E, p, T, At 1
, Bt 2

, X� is a causal structure, then cr(At 1
, Bt 2

, X)=
p(Bt 2

� XSAt 1
)−p(Bt 2

� X),
6. cr(Y, V, X)=cr(Y, Ø, X)=0 for all non-empty Y, X�E,
7. If Z1¤Z2, then

cr(Y, Z1, X)5cr(Y, Z2, X) if cr(Y, Z2, X) is positive
cr(Y, Z1, X)]cr(Y, Z2, X) if cr(Y, Z2, X) is negative

for all non-empty Y, Z1, Z2, X�E.

The causal relevance function cr is rendered a normed measure by axioms 4, 6 and
7. According to axiom 6, no event is causally relevant to the sure event V and to
the impossible event Ø.

A causal space as just introduced provides a strong ordering for causes in the
reals [−1, +1]. Thus, metric causal and metacausal studies become feasible. For
example, (in analogy to random functions) one may construct causal functions that
cause causal relevance distributions over the event algebra, cause their temporal
changes (‘causal kinematics’), etc.10 The space enables us to also lend a comparative
order to causal relationships among causes and effects by comparing their quantita-
tive causal relevances cr(A, B, X). We will thus achieve in medical knowledge
engineering a wide-ranging comparative causal terminology and talk such as ‘A is
a stronger positive cause of B in class X than is C’, ‘A is causally more rele6ant to
B within X than is C within Y’, ‘A is causally less rele6ant to B within X than is
C’, and the like. For example, the statement

cr(chlamydia, chd, non-diabetics)\cr(smoking, chd, non-diabetics),

says that Chlamydia pneumoniae infection is a stronger cause of coronary heart
disease in non-diabetics than is smoking. Analogous examples are:

cr(chlamydia, chd, diabetics)=cr(chlamydiaSsmoking, chd, non-diabetics),
cr(chlamydia, chd, diabetics)Bcr(chlamydia, chd, non-diabetics),
cr(helicobacter, gastric–ulcer, men)\cr(oedipus, gastric–ulcer, men),
cr(contraceptives, thrombosis, pregnant)\cr(contraceptives, thrombosis,
non-pregnant).

4.5. Conjectural causal structures

Numerical probabilities needed for calculating the causal relevance cr(A, B, X) an
event has to another one, are unfortunately not always available in medicine. In
most cases we have only to guess if an event like smoking exerts any causal
influence on something else like lung cancer. How do we do that? Is there a
possibilty to improve this subjective capability of etiologic conjecturing when
quantitative knowledge is lacking? As a straight development of our foregoing
considerations, we will in what follows sketch methods that can be used to this end.

10 Ontological facets of the problem ‘what does the causal relevance function cr measure?’ become
now apparent (see [20]).
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The best situation in this worst case of lacking numerical probabilities would be
if one were in a position to say which one of the events whose cause-effect
relationships are being judged is more likely than another one. That is, comparative
probabilities should be available. They are obtainable by, for example, frequency
analyses and comparisons. The comparative probabilities we need are conditional
ones holding between pairs of conditional events (B � A) and (D � C). The two-place
relation ‘is at least as likely as’ or any of its synonyms may serve as the basic
predicate. We symbolize it by ‘] ’ to use the shorthand notation:

(B � A)] (D � C), (31)

to be read as ‘B given A is at least as likely as D given C’. For example, ‘coronary
heart disease given Chlamydia pneumoniae infection is at least as likely as stroke
given cerebral atherosclerosis’. By standard definitions we draw of Eq. (31) the
relations:

(B � A)\ (D � C), (32)

(B � A): (D � C), (33)

(B � A)" (D � C), (34)

the first one to be read as ‘B given A is more likely than D given C’, the second one
as ‘B given A is as likely as D given C’, and the last one as ‘B given A is not as
likely as D given C’. We cannot deal here with a calculus for handling these
comparative probability relations (see, e.g. [5,25]). Based upon such a calculus, we
say: a triplet �V, E, ]� is a comparati6e probability space iff V is a sample space,
E is an event algebra on V, and ] is a comparative probability relation on E such
that the axioms of that calculus are satisfied.

Definition 10. j is a conjectural potential causal structure iff there are V, E, ] , T,
At 1

, Bt 2
and X such that

1. j=�V, E, ] , T, At 1
, Bt 2

, X�,
2. �V, E, ]� is a comparative probability space,
3. T is a discrete time interval,
4. At 1

, Bt 2
and X are non-empty elements of E,

5. t1, t2�T such that t1B t2,
6. (Bt 2

� XSAt 1
)" (Bt 2

� X).

The analogy with Definition 1 in Section 4.3 is obvious where potential causal
structures were constructed on quantitative probability spaces. The only difference
is that the comparative probability relation ] now replaces the quantitative
probability function p. For example, supposing that myocardial infarction given
both diabetes and obesity is more likely than given diabetes only,

(infarctiont 2
� diabetesSobesityt 1

)\ (infarctiont 2
� diabetes),

then, supplemented by remaining ingredients, we have the following conjectural
potential causal structure: �V, E, \ , T, obesityt 1

, myocardial–infarctiont 2
, dia-
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betes�. Note that no statistical knowledge on quantitative probabilities is re-
quired.11

In a fashion formally analogous to the quantitative cases in Section 4.3, addi-
tional causal terminology may be easily defined, but we will not parallel that
procedure here. The only notions to demonstrate is this main pair.

Definition 11. If �V, E, ] , T, At 1
, Bt 2

, X� is a conjectural potential causal struc-
ture and is not a spurious one, then

At 1
is a conjectural positi6e cause of Bt 2

within X iff (Bt 2
� XSAt 1

)\ (Bt 2
� X),

At 1
is a conjectural negati6e cause of Bt 2

within X iff (Bt 2
� XSAt 1

)B (Bt 2
� X).

Definition 12. If �V, E, ] , T, At 1
, Bt 2

, X� is a conjectural potential causal struc-
ture, then it is a conjectural causal structure iff At 1

is a conjectural positi6e or a
conjectural negati6e cause of Bt 2

within X.

Despite lacking quantitative probabilities in conjectural causal structures a quasi
measure of causal relevance like cr can also be constructed in these structures (cf.
[20]).12

4.6. Subjecti6e causal structures

If in addition to quantitative probabilities comparative ones are also lacking in a
particular domain, we will depend on qualitative probabilities. They are usually
communicated by expressions like ‘probable’, ‘likely’, ‘unlikely’, etc. For instance,
‘lung cancer in men given smoking is likely’. The major part of the personal
knowledge and belief one uses in everyday life and medical practice belongs to this
type of probabilistic knowledge and belief. The question arises if there is a
possibility to elicit causal knowledge and belief from this subjective part of our
epistemic sphere. To this end I now will construct a notion of ‘qualitative
probability space’ and will explore if it can also be extended to a causal structure.

We understand by linguistic function a function f which maps a particular domain
into a set of linguistic entities, i.e. words or sentences. This may be exemplified by
the linguistic function ‘Color-of’ which maps the set of objects into the set of color
designators:

Color-of: Objects�{red, green, yellow,…, etc.}.

11 There is a second difference between causal structures of the first kind based upon quantitative
probabilities and conjectural causal structures. It is a philosophical one. Conjectural causal structures are
beyond any doubt subjective structures in that comparative probabilities are subjective probabilities (see
footnote 3).

12 One can also amalgamate the causal structures as defined on the basis of quantitative probability
in Section 4.3, and the conjectural ones. For this approach, see [20].
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A statement such as ‘blood is red’ thus becomes expressible as a functional equation
of the form:

Color-of(blood)=red.

The word ‘Age’ is another example mapping the set of people into the set of age
lables such as young, old, very old, etc. e.g. Age(Manuel)=very young. The
linguistic function ‘Truth’ maps the set of statements into the set of truth values.
Here are some examples:

Statements � {true, not true, very true, false, more or less true,Truth:
quite true,…},
People � {young, very young, adult, old, quite old, more or lessAge:
old,…},

Weight: Objects � {light, very light, not very light, heavy, not heavy,…},
Ethics: Actions � {good, bad, very good, very very good, excellent, miser-

able,…}.

Following the inventor of the theory of linguistic functions, Lotfi A. Zadeh, who
improperly called them ‘linguistic variables’ [27–29], the range of a linguistic
function f will be referred to as its term set, written Term( f ). We can in this way
arrange a term set such as {likely, very likely, not likely, unlikely, more or less
likely, certain, improbable,…} which may serve as the range of a linguistic
probability function, denoted as Probability, or P for short:

P: Events�{likely, very likely, not likely, unlikely, more or less likely, cer-
tain, improbable,…}.

This will enable us to assign to events linguistic probabilities in the following
manner: P({Chalamydia pneumoniae infection is present})=very likely. P({it will
rain tomorrow}S{it will not rain tomorrow})= improbable.

Let P be a function of this type with Term(P) as above. It is possible to transform
Term(P) into an ordinal or rank-order scale. This will be achieved by a ranking
according to whether a term tj�Term(P) assigns a higher subjective probability to
an event than another term ti�Term(P) does. Such is the case, for example,
regarding the two terms ‘unlikely’ and ‘very likely’. The latter assigns a higher
subjective probability to an event than does ‘unlikely’. Let us string the elements of
Term(P) in the order of their increasing subjective probability content as just
described:

Term(P)=�improbable, t2,…, tn−1, certain� (35)

such that t1 denotes the least probable, and tn signifies the most probable. Given
any two terms ti, tj�Term(P), we say that ti is below tj, or conversely, tj is above
ti iff iB j. For example, it will be commensurate with our intuition if in Eq. (35)
‘not likely’ is below ‘very likely’, and ‘very very likely’ is above ‘likely’. We define:
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tj]ti iff j] i, that is, iff tj is not below ti,

ti"tj iff i" j.

Definition 13. j is a qualitati6e probability space iff there are V, E, P, Term(P),
and ] such that

1. j=�V, E, P, Term(P), ]�,
2. V is a sample space,
3. E is an event algebra on V,
4. P: E�Term(P),
5. Term(P)=�improbable, t2,… tn−1, certain� is a rank-ordered term set of P,
6. P(Ø)= improbable,
7. P(V)=certain,
8. If Z±Y, then P(Z)]P(Y) for all Y, Z�E.

According to the last three axioms, the qualitative probability function P must be
viewed as a normed linguistic measure. A fuzzy-theoretical method of computation
with linguistic probabilities may be found in [29]. It renders the structure above a
qualitative probability calculus. Now, it does not appear a difficult task to also
extend this probability calculus to a causal structure.

Definition 14. j is a subjecti6e potential causal structure iff there are V, E, P,
Term(P), ] , T, At 1

, Bt 2
and X such that

1. j=�V, E, P, Term(P), ] , T, At 1
, Bt 2

, X�,
2. �V, E, P, Term(P), ]� is a qualitative probability space,
3. T is a discrete time interval,
4. At 1

, Bt 2
and X are non-empty elements of E,

5. t1, t2�T such that t1B t2,
6. P(Bt 2

� XSAt 1
)"P(Bt 2

� X).

The inequality sign in axiom 6 of course denotes the semantic difference defined
above and means that the linguistic probability values ti, tj�Term(P) assigned to
the two conditional events are distinct. This implies that one of them is above the
other one.

The formal analogy between this concept and the other two ones introduced in
Definitions 1 and 10 upon which our earlier considerations and constructions were
based, is striking. We will therefore not repeat the procedure of introducing
analogous notions of spuriousness, causal interaction, etc. Is it possible, however,
to also reconstruct in this subjective context the main notions of ‘causing’ and
‘discausing’?

Definition 15. If �V, E, P, Term(P), ] , T, At 1
, Bt 2

, X� is a subjective potential
causal structure and is not a spurious one, then

1. At 1
is a positi6e subjecti6e cause of Bt 2

within X iff P(Bt 2
� XSAt 1

) is above
P(Bt 2

� X),
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2. At 1
is a negati6e subjecti6e cause of Bt 2

within X iff P(Bt 2
� XSAt 1

) is below
P(Bt 2

� X).

Definition 16. If �V, E, P, Term(P), ] , T, At 1
, Bt 2

, X� is a subjective potential
causal structure, then it is a subjecti6e causal structure iff At 1

is a positi6e or a
negati6e subjecti6e cause of Bt 2

within X.

Comparable to previous causal structures introduced in preceding sections, with
respect to a subjective causal structure it is natural and legitimate to assert as well
that, for instance, At 1

causes Bt 2
within X if in this structure At 1

is a positive
subjective cause of Bt 2

, and conversely, to say that At 1
discauses Bt 2

within X if in
this structure At 1

is a negative subjective cause of Bt 2
. This propositional attitude

reflects the general pattern of qualitative causal belief revealing at the same time
that and why it may be difficult to discriminate between realism and delusion (cf.
[15], p. 173). Not only our everyday life, but also diagnostic and therapeutic
decision-making in clinical practice is governed by qualitative causal beliefs where
something is believed by someone to cause something else. The question therefore
arises if notwithstanding their qualitative and subjective character, clinical causal
beliefs are amenable to some kind of causal rele6ance talk and control. We now
turn to this question.

5. Fuzzy etiology

When introducing conjectural and qualitative causal structures above we have
already entered the realm of fuzzy etiology because comparative as well as
qualitative probabilities upon which they are based are fuzzy probabilities. This
becomes apparent by a closer look both at the predicate ‘is at least as likely as’ that
we used as our basic comparative probability relation, and at the elements of the
term set �improbable, t2,…, tn−1, certain� representing the range of the qualitative
probability function. All of them are fuzzy predicates denoting fuzzy sets. If we take
into account that even a quantitative probability may be a fuzzy number such as
‘p(B � A)=approximately 0.7’, we will recognize how serviceable in etiology fuzzy
theory may be. This service is not confined to the probability component of
causation, however. Causal talks including causal relevance itself as a relation
among events may also benefit from fuzzy theory.

5.1. Fuzzy causal structures

For example, it appears quite reasonable to use fuzzy predicates and to state that

A causes B within X to a low extent,
A strongly causes B within Y,
A moderately discauses B within Z,
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when an appropriate semantics for this chattering is available. To this end, let us
agree upon a uniform syntax that will substitute for all fuzzy statements of the type
above. We write:

CR(A, B, X)=t

and read this as ‘the causal relevance of A to B within X is t ’ where t denotes a
fuzzy strength of causation such as ‘low’ in the following statement:

CR(smoking, lung–cancer, teenagers)= low.

Note that this new notion of causal relevance, CR, written in capitals, is a linguistic
function and should not be confounded with the numerical function cr of causal
relevance that we dealt with in Section 4.4. Let us fix a particular range for it, for
example, something like the following term set:

Term(CR)={low, very low, not low, medium, high, very high, not high, very
very high, extremely high, more or less high, neutral, negative,
weakly negative, very negative,…, etc.}.

CR is a three-place linguistic function and will map the Cartesian triple of the event
algebra E into the set Term(CR):

CR: E×E×E�Term(CR).

We will thus become able to understand what it means to say, for example, that
within non-diabetics, Chlamydia pneumoniae infection is causally highly relevant to
coronary heart disease:

CR(chlamydia, chd, non-diabetics)=high.

According to what we have already studied earlier, it is of course possible that
within different reference classes this infection is differently causally relevant to the
same disease. For instance, we may face the following situation:

CR(chlamydia, chd, diabetics)=very very low,
CR(chlamydia, chd, diabeticsSrheumatism)= low,
CR(chlamydia, chd, non-diabeticsSrheumatism)=very high.

And it is also conceivable that by causal intervention the very high causal relevance
just mentioned may be reversed, e.g. by using antibiotics, aspirin, etc.:

CR(chlamydiaSantibiotics, chd, non-diabeticsSrheumatism)=moderately
negative,
CR(chlamydiaSantibioticsSaspirin, chd, non-diabeticsSrheumatism)=
highly negative.

These examples demonstrate how causal relevances may be expressed and dealt
with non-numerically linguistically, provided they are available. One may therefore
inquire into whether or not fuzzy causal structures may be constructed in analogy
to non-fuzzy (=crisp) ones discussed earlier. We will not go into detail here, but
will only emphasize that fuzzy causal structures may indeed prove useful (see [20]).
This may be exemplified by introducing only one type of fuzzy causal structures.
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Definition 17. j is a fuzzy causal structure iff there are At 1
, Bt 2

, X, CR, and t such
that

1. j=�At 1
, Bt 2

, X, CR, t�,
2. There is a probability space �V, E, p� and a time set T such that
�V, E, p, T, At 1

, Bt 2
, X� is a causal structure,

3. There is a Term(CR) such that CR: E×E×E�Term(CR),
4. CR(At 1

, Bt 2
, X)=t.

For example, with reference to our discussions and considerations in Section 4.3 we
may presume that �chlamydiat 1

, chdt 2
, non-diabetics, CR, medium� is a fuzzy

causal structure. The question now arises how a fuzzy causal relevance value t such
as ‘medium’ appearing in a fuzzy causal structure is obtained and obtainable.
Clause 2 of Definition 17 shows that an underlying probabilistic-causal structure is
required, and that means two things. First, without probability no fuzzy causality.
For causal structures rest on (quantitative, comparative, or qualitative) probabiliy
spaces. Second, the fuzzy, linguistic value t must be derived from them. To this end
we will now straightforwardly construct a concept of fuzzy causal space that will
enable us to fuzzify causality.

5.2. Fuzzy causal spaces

The idea behind, and the intuitive understanding of, the concept of a fuzzy causal
space we are aiming at is this: we may be faced with a particular type of system
displaying a more or less complex causal behavior, e.g. with the pathology and
epidemiology of all or some infectious diseases in human population. We need not
describe this causal system crisply numerically. We may describe it fuzzily linguisti-
cally as well in that we may state, for instance, ‘event A is causally strongly
associated with event B, but only causally moderately associated with event C, and
causally highly negati6ely associated with event D’, etc. The totality of these fuzzy
causal statements represent a fuzzy causal space where the set of italicized, fuzzy
CR values used may be {a, b,…, m}¤Term(CR). It appears quite promising to
view this set {a, b,…, m} as a fuzzy causal relevance distribution over the event
algebra and to assume that the distribution both is controlled by a particular fuzzy
causal function (remember the stochastic analogue: ‘random function’) and will
exhibit a fuzzy causal kinematics (cf. [20]).

The following Definition 18 extends fuzzy causal structures to fuzzy causal spaces
by generalizing the structures and by transforming the linguistic function CR to a
normed measure. To this end the term set Term(CR) must be rank-ordered in
complete analogy to the term set of the qualitative probability, Term(P), in Section
4.6. Let us suppose that the approved, rank-ordered term set is:

Term(CR)=�t1,…, neutral,…, tn�, (36)

with t1 being the lowest fuzzy linguistic value of CR below neutral, i.e. at the
negative side, and tn being the highest value above neutral, i.e. at the positive side.
We define: ti5tj iff i5 j.
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Definition 18. j is a fuzzy causal space iff there are E1, E2, E3, CR, and Term(CR)
such that

1. j=�E1, E2, E3, CR, Term(CR)�,
2. There is a probability space �V, E, p� and a time set T such that for every
At 1
�E1 and Bt 2

�E2 there is an X�E3 such that �V, E, p, T, At 1
, Bt 2

, X� is a
causal structure,
3. E1, E2, E3¤E,
4. Term(CR)=�t1,…, neutral,…, tn� is a rank-ordered term set of CR,
5. CR: E×E×E�Term(CR),
6. CR(Y, V, X)=CR(Y, Ø, X)=neutral for all non-empty Y, X�E,
7. If Z1¤Z2, then

CR(Y, Z1, X)5CR(Y, Z2, X) if CR(Y, Z2, X)]neutral
CR(Y, Z1, X)]CR(Y, Z2, X) if CR(Y, Z2, X)5neutral

for all non-empty Y, Z1, Z2, X�E.

The linguistic causal relevance function CR becomes a normed measure by axioms
5–7. But it remains undefined. We will not pursue the analogies any further and
will therefore not construct conjectural and subjective fuzzy causal spaces, though
it would be interesting to observe how in these spaces causal belief kinematics
emerge and develop as a consequence of fluctuating subjective base probabilities,
i.e. in the wake of epistemic kinematics.13

We have two types of causal space at our disposal thus far, the crisp ones
provided by the numerical causal relevance measure cr on the one hand (Definition
9), and the fuzzy ones supplied by the linguistic causal relevance measure CR, on
the other. Both spaces may be interrelated with one another in the following way:
a crisp causal space can be transformed into a fuzzy causal space, i.e. it can be
fuzzified such that given any numerical causal relevance value such as

cr(A, B, X)=r

we can determine if r is low, medium, high, very high, not very low and not very
high, etc. that is, if

CR(A, B, X)=ti,

where ti�Term(CR). Seen from fuzzy-theoretic perspective, that reads: every lin-
guistic value of the measure CR, e.g. ‘high’, may be defined as a name for a fuzzy
subset of the range [−1, +1] of the measure cr such that any point in [−1, +1]
can be linguistically classified in the term set Term(CR). We will understand this
possibility of semantic interpretation of CR values in the following way.

The term set Term(CR)=�t1,…, neutral,…, tn� as it was partly displayed in the
preceding subsection may be a more or less large set of linguistic terms. Though this
large set may base upon only a few undefined primitives such as ‘low’, ‘medium’,
and ‘high’. Let us call them primary terms of CR, represented by the set ‘primary-

13 Cf. ‘epistemic kinematics’ in clinical decision-making in ([16], p. 108).
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Terms(CR)’. The remaining elements of Term(CR), such as ‘very high’, ‘not low’,
‘not very high and not very low’, and the like are defined by applying to primary
terms semantic modifiers of different type, e.g. connectives like ‘not’, linguistic
hedges like ‘very’, etc. Thus, the semantic interpretation of primary terms will
suffice to obtain an entirely interpreted Term(CR) because semantic modifiers obey
particularly specified rules. This basic semantic interpretation and definition of
primary terms is provided by a compatibility function m.

Let m be a binary function which maps the Cartesian product of the range of the
function cr and the primary terms of CR into the unit interval:

m : [−1, +1]×primary-Terms(CR)� [0, 1].

Following Zadeh [27–29], we will call m a compatibility function. It evaluates, within
[0, 1], the compatibility of a cr value x� [−1, +1] with a linguistic term
ti�primary-Term(CR). Thus, it assigns to a pair �x, ti� the grade of membership of
x in ti. That means in fuzzy-theoretic terminology that m is a two-place fuzzyfying
membership function. For instance, we may carry out the definition of our function
m above in such a way that we may obtain:

m(1, high)=m(−1, high)=1
m(0.8, high)=m(−0.8, high)=1
m(0.6, high)=m(−0.6, high)=0.8
m(0.5, high)=m(−0.5, high)=0.3
m(0.2, high)=m(−0.2, high)=0

For the sake of convenience, we abbreviate m(x, ti)=y by mti(x)=y. The above
examples would then read:

mhigh(1)=mhigh(−1)=1
mhigh(0.8)=mhigh(−0.8)=1
mhigh(0.6)=mhigh(−0.6)=0.8
mhigh(0.5)=mhigh(−0.5)=0.3
mhigh(0.2)=mhigh(−0.2)=0

And we would then have a lot of local membership functions such as mhigh, mmedium,
mlow, mvery-high, etc. Each of them may be interpreted as a particular fuzzy restriction
of m on the range [−1, +1] of the numerical function cr. Plots of some of these
restrictions are displayed in Figs. 4–7.

Figs. 4–7 illustrate well what it means to say that linguistic CR values such as
‘high’, ‘very high’, ‘not low’, etc. have now become interpreted labels for fuzzy
restrictions of the function m on the values of the numerical function cr.

A direct, fuzzy-theoretic interpretation, definition, and understanding of linguistic
causal relevance is possible in the following way. With reference to the definition of
a fuzzy set as a set of ordered pairs �x, f(x)� such that x is an element of a base,
crisp set X, and f is a function that maps X into the unit interval [0, 1], we can use
any of the functions mhigh, mmedium, mlow, etc. as a particular fuzzyfying function on
the domain [−1, +1] of the numerical causal relevance function cr, for instance:
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mhigh: [−1,+1]� [0, 1].

We will thus obtain ‘high, positive causal relevence’ and ‘high, negative causal
relevance’ as fuzzy sets, e.g.

causally highly positively relevant

={(1, 1), (0.8, 1), (0.6, 0.8), (0.5, 0.3), (0.2, 0)}.

The same kind of fuzzification applies to key notions of etiology, epidemiology, and
clinical medicine such as indicator, risk factor, preventive factor, and protective
factor. Each one of them may be fuzzily partitioned into different grades of
strength, and these grades may be interpreted as labels for degrees of causal impact.

6. Conclusion

We have shown that deterministic etiology is empirically unproductive because
the domains of health and disease are nearly void of deterministic cause-effect
relationships. We have therefore proposed a concept of probabilistic etiology that
also makes fuzzy etiology feasible. The concept proposed is part of a relativistic
theory of causality that rests upon a syntactic solution to the venerable philosophic
puzzle of causation. The sterility of perputal debates on causality is ascribed to the
common Aristotelian view that the cause-effect relationship was adequately
reflected by the two-place predicate ‘A causes B’. We have recommended to
conceive a third-place predicate instead, ‘A causes B in C’, where C is a reference
class. This syntactic innovation enables us to define causation in terms of condi-
tional probabilistic dependence and to put it in the algebraic frame of probability
theory. We have shown that it is possible to reconstruct causal structures as
algebraic extensions of probability spaces and thus to understand scientific etiology
as an empirical application of probability theory to health and disease. Different
types of causal notions (qualitative, quantitative, and comparative ones) have been
constructed each one having its own, suitable domain of application. Among the
interesting features of the theory are the following ones.

The causal notions we have proposed capture both positive causation (generat-
ing) and negative causation (preventing). They are amenable to algebraic calcula-
tion (causal algebra). The quantitative notion of causation measuring the causal
impact makes it also possible to fuzzify causality. Thus, etiology becomes amenable
to fuzzy theory.

The approach may be of assistance in medical knowledge engineering, pathology,
nosology, epidemiology, and clinical decision-making. Dr G. William Moore (Chief
Pathologist, Baltimore) brought it to my attention that ‘‘some concepts of medical
etiology are of non-probabilistic nature, and are based upon years, even centuries,
of interlocking tradition and experience. The established laws of physics, chemistry,
and pathophysiology contribute at least as much as sequential probabilities to a
concept of medical etiology. Two of the examples (the falling barometer as a
spurious cause of thunderstorms, and smoking as a cause of lung cancer) beg for
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some allusion to the laws of nature. In the lung cancer example, our concept of
causality is not based solely upon the observation that many smokers get lung
cancer, but also upon concepts that smoke is inhaled down the tracheobronchial
tree, nicotine inhibits ciliary mobility and clearing from the surface respiratory
epithelium, the remaining tars stimulate squamous metaplasia, and eventually
atypical squamous metaplasia followed by dysplasia, whose cells have no cilia, and
thus further aggravate the positive feedback of uncleared, carcinogenic tars, which
select cell-lines with certain oncogenes, etc., etc. Even if we knew the probability (or
only the fuzzy rank-order) of these events, we wouldn’t know how to structure the
relationships among the events in a manner that captures the centuries of experi-
ence and investigation with anatomy, physiology, pathology, etc. Likewise, the
falling barometer is not a cause of thunderstorms, quite apart from its time-se-
quence relationships, because such an assertion would violate our sense of theory in
geophysics and meteorology’’.

Acknowledgements

I thank Inge Holtkamp, Daniela Imping, Hannelore Petry, Margret Titze, and
Georg Karrasch for their diverse managerial assistance, my son Manuel for
drawing the figures of this paper, and my son David for helpful suggestions in
fuzzyfying causality. Special thanks are due to Dr G. William Moore (Baltimore)
for valuable criticisms and suggestions.

References

[1] Buja LM. Does atherosclerosis have an infectious etiology? Circulation 1996;94:872–3.
[2] Glynn JR. Helicobacter pylori and the heart. Lancet 1994;344:146.
[3] Grayston JT, Campbell LA, Kuo CC, et al. A new respiratory tract pathogen: Chlamydia

pneumoniae strain TWAR. J. Infect. Dis. 1990;161:618–25.
[4] Hesslow G. Two notes on the probabilistic approach to causality. Phil. Sci. 1976;43:290–2.
[5] Krantz DH, Luce RD, Suppes P, Tversky A. Foundations of Measurement, vol. 1. New York:

Academic Press, 1971.
[6] Mackie JL. The Cement of the Universe. A Study of Causation. Oxford: Clarendon Press, 1974.
[7] Melnick JL, Petrie BL, Dreesman GR, et al. Cytomegalovirus antigen within human arterial

smooth muscle cells. Lancet 1983;II:644–7.
[8] Mendall MA, Carrington D, Strachan D, et al. Chlamydia pneumoniae: risk factors for seropositiv-

ity and association with coronary heart disease. J. Infect. 1995;30:121–8.
[9] Miettinen H, Lehto S, Saikku P, et al. Association of Chlamydia pneumoniae and acute coronary

heart disease events in non-insulin dependent diabetic and non-diabetic subjects in Finland. Euro.
Heart J. 1996;17:682–8.

[10] Muhlestein JB, Hammond EH, Carlquist JF, et al. Increased incidence of Chlamydia species within
coronary arteries of patients with symptomatic atherosclerosis versus other forms of cardiovascular
disease. J. Am. Coll. Cardiol. 1996;27:1555–61.

[11] Reichenbach H. The Direction of Time. Berkeley: University of California Press, 1956.
[12] Ridker PM, Cushman M, Stampfer M, et al. Inflammation, aspirin, and the risk of cardiovascular

disease in apparently healthy men. New Engl. J. Med. 1997;336:973–9.



K. Sadegh-Zadeh / Artificial Intelligence in Medicine 12 (1998) 227–270270

[13] Sadegh-Zadeh K. Nosological and etiological problems of psychopathology. Paper presented at the
Symposium, Karl Eduard Rothschuh 65 dedicated to Professor K.E. Rothschuh on the occasion of
his 65th birthday. University of Münster Medical Institutions, Münster, 6th July, 1973. (In
German.)

[14] Sadegh-Zadeh K. Problems of Causality in Clinical Practice. University of Münster Medical
Institutions, 1979. (In German.)

[15] Sadegh-Zadeh K. Perception, illusion, and hallucination. Metamedicine 1982;3:159–91.
[16] Sadegh-Zadeh K. Foundations of clinical praxiology Part II: categorical and conjectural diagnoses.

Metamedicine 1982;3:101–14.
[17] Sadegh-Zadeh K. Causal systems. In: Münstersche Beiträge zur Geschichte und Theorie der
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