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1. Introduction

Sequence analysis and sequence comparison are two
basic methods in genetics, genomics, and other
areas of inquiry to explore and compare the genetic
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Summary

Objective: A theory of fuzzy polynucleotides, including an n-dimensional metric
fuzzy polynucleotide space, has been previously introduced by the present author
for fuzzy-theoretical analysis of nucleic acids [Sadegh-Zadeh K. Fuzzy genomes. Artif
Intell Med 2000;18:1—28; Sadegh-Zadeh K. Ein Verfahren zur Fuzzydecodierung und
Fuzzydechiffrierung von Informationen. Offenlegungsschrift DE 199 36 925 A 1.
Deutsches Patent- und Markenamt; 2001]. The conceptual framework of that theory
has been used by Nieto et al. [Nieto JJ, Torres A, Vázquez-Trasande MM. Ametric space
to study differences between polynucleotides. Appl Math Lett 2003;16:1289—94;
Nieto JJ, Torres A, Georgiou DN, Karakasidis TE. Fuzzy polynucleotide spaces and
metrics. Bull Math Biol 2006;68:703—25] and Torres et al. [Torres A, Nieto JJ. The
fuzzy polynucleotide space: basic properties. Bioinformatics 2003;19:587—92; Torres
A, Nieto JJ. Fuzzy logic inmedicine and bioinformatics. J Biomed Biotechnol 2006;1—7
[Article ID 91908]] to create a completely different, 12-dimensional metric space
which they have also called ‘the fuzzy polynucleotide space’. In the present paper
both spaces are compared.
Material and method: Both metric spaces are briefly outlined. Similarity and dis-
similarity relationships between polynucleotide strings are measured in both spaces
to compare their performance.
Results: Nieto et al.’s and Torres et al.’s metric space measures the relationships
between polynucleotide chains incorrectly. Structurally highly different polynucleo-
tide sequences are misclassified as highly similar ones, and completely different
sequences are misclassified as identical ones. For this reason their construct is to be
considered as a device of misdiagnosis that bears ‘‘fuzzy polynucleotide space’’ as a
misnomer.
# 2007 Elsevier B.V. All rights reserved.
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material of different organisms and viruses. In a
research program started in the 1990s the present
author tried to render fuzzy theory directly acces-
sible to sequence analysis and comparison. To this
end he fuzzified the concept of sequence and used
biopolymers, especially the nucleic acids DNA and
RNA, as examples [1,2,7]. His basic step consisted in
transforming polynucleotide chains, i.e. nucleic
acids, to ordered fuzzy sets. He could in this way
demonstrate that a polynucleotide molecule is
representable as a point in an n-dimensional unit
hypercube and constructed a framework for fuzzy-
theoretical analysis of polynucleotides. This
approach enabled quantitative studies such as the
measurement of distances, similarities, and dissim-
ilarities between, and an abstract geometry of,
polynucleotide sequences. The n-dimensional unit
hypercube enriched by a distance function d, i.e.
h[0, 1]n, di, that he suggested as a metric space for
use in such inquiries he named the fuzzy polynucleo-
tide space. In a series of publications since 2003
Nieto, Torres et al. [3—6] have fairly disfigured this
metric space in that they have reduced it to a 12-
dimensional one which they have also termed ‘the
fuzzy polynucleotide space’. As can be expected
from this reduction, however, their construct is
irremediably flawed. Here are two simple examples.
First, the RNA sequences UACAGU and UGUUAC are
diagnosed to be similar to the extent 0.833 and
different to the extent 0.167, whereas quite the
opposite is true because they have only one nitro-
genous base in common at their initial sites. Second,
UACAGU and AGUUAC are diagnosed to be identical
sequences, whereas again the opposite is true
because they have no single base in common at
their corresponding sites. To analyze the fault in
detail and to explain its genesis causally we first
will recall our concept of fuzzy polynucleotides in
Sections 2—3. In Sections 4—5 both metric spaces
are briefly outlined so we may compare and evalu-
ate them in Sections 6—7. Section 8 closes our
comments on Nieto, Torres et al.’s system with
a concise causal explanation of its incorrigible
defectiveness.

2. Polynucleotides

A polynucleotide such as a DNA or RNA molecule is
a linear polymer that consists of many smaller
units called its building blocks or monomers (from
Greek ‘meros’ = part). As is usual, we will here
formally represent the monomers of a polynucleo-
tide by their nitrogenous bases, and thus a poly-
nucleotide itself by its base sequence such as
GTTTACGAA. (for more details, see Appendix.)

We may in this way conceive a polynucleotide as
a sequence of letters, i.e. as a word, of length
m � 1 over a particular alphabet of length n � 1.
An alphabet is an ordered set of n � 1 signs, char-
acters or letters, hL1, . . ., Lni, with n being its
length. We distinguish between:

DNA alphabet ¼ hT;C;A;Gi and

RNA alphabet ¼ hU;C;A;Gi

each of length 4. Their letters are the initials of the
names of nitrogenous bases (Thymine, Cytosine,
Adenine, Guanine, Uracil) contained in the five
different monomers of polynucleotides (see Appen-
dix). For example, the sequence GTTTACGAA is a
word of length 9 over the DNA alphabet hT, C, A, Gi,
while the sequence UGGAAC is a word of length 6
over the RNA alphabet hU, C, A, Gi. We will in this
brief note use RNAwords only. The terms ‘word’ and
‘sequence’ are used interchangeably. For detailed
inquiries, see [1].

3. Fuzzy polynucleotides

A fuzzy polynucleotide is a polynucleotide sequ-
ence represented as a fuzzy sequence. To demon-
strate, we first introduce the notion of a fuzzy
sequence.

If V is a non-empty set of any objects, A is a fuzzy
set in, or over, V iff there is a function mA such that
mA: V! [0, 1] and A = {(x, mA(x))jx 2 V}. That is, A
is the set of all pairs (x, mA(x)) such that to each
member x of V is attached a real number mA(x) 2 [0,
1] indicating the degree of its membership in A. Set
V is referred to as the universe of discourse or the
ground set, and the function mA from V to unit
interval [0, 1] constituting the fuzzy set A is the
membership function of A. For example, if V = {x, y,
z}, then A = {(x, 0.5), (y, 1), (z, 0.2)} is a fuzzy set
over V. Another fuzzy set over V is B = {(x, 0.8), (y,
0), (z, 1)}, and so on. There are infinitely many fuzzy
sets over a ground set V because the number of
mappings from V to [0, 1] is infinite. This infinite set
of all fuzzy sets over V is referred to as the fuzzy
powerset of V and written F(2 V).

A fuzzy sequence is simply an ordered fuzzy
set, i.e. a fuzzy set over an ordered ground
set V = hx1, . . ., xni, for example, h(x1, 0.8),
(x2, 1), . . ., (xn, 0.4)i. A polynucleotide is repre-
sentable as such an ordered fuzzy set. To this
end we consider the alphabet, over which it is
a word, as the ground set V and fuzzify this
ground set as above. We thereby obtain fuzzy
letters of which the polynucleotide can be
reconstructed as a fuzzy word. For example,
let mU, mC, mA, and mG be four different functions
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each of which maps the RNA alphabet hU, C, A,
Gi = V as our ground set to unit interval [0, 1]:

mU : hU;C;A;Gi! ½0; 1�
mC : hU;C;A;Gi! ½0; 1�
mA : hU;C;A;Gi! ½0; 1�
mG : hU;C;A;Gi! ½0; 1�
to yield the following four different fuzzy letters as
ordered fuzzy sets:

Letter U ¼ hðU; 1Þ; ðC; 0Þ; ðA; 0Þ; ðG; 0Þi read ‘U’
Letter C ¼ hðU; 0Þ; ðC; 1Þ; ðA; 0Þ; ðG; 0Þi read ‘C’
Letter A ¼ hðU; 0Þ; ðC; 0Þ; ðA; 1Þ; ðG; 0Þi read ‘A’
Letter G ¼ hðU; 0Þ; ðC; 0Þ; ðA; 0Þ; ðG; 1Þi read ‘G’

By means of these fuzzy letters we may recon-
struct, for example, the RNA sequence UGG as the
ordered fuzzy set hLetter U, Letter G, Letter Gi,
that is:

hðU; 1Þ; ðC; 0Þ; ðA; 0Þ; ðG; 0Þ; ðU; 0Þ; ðC; 0Þ; ðA; 0Þ;
ðG; 1Þ; ðU; 0Þ; ðC; 0Þ; ðA; 0Þ; ðG; 1Þi:

This ordered fuzzy set is a fuzzy polynucleotide,
i.e. our RNA triplet UGG in a fuzzified form. To
simplify the representation of the four fuzzy letters
above we may use only their membership degrees.
Thus, we obtain the following four simplified fuzzy
letters in vector notation:

Letter U ¼ ð1; 0; 0; 0Þ;
Letter C ¼ ð0; 1; 0; 0Þ;
Letter A ¼ ð0; 0; 1; 0Þ;
Letter G ¼ ð0; 0; 0; 1Þ:

By the use of this vector notation also our RNA
sequence UGG above is simplified thus:

ð1; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 1Þ:
This 12-dimensional vector represents our exam-

ple, i.e. the triplet codon UGG. Analogously, the
following 24-dimensional vector is the polynucleo-
tide UGGAAC consisting of two triplet codons, i.e.
UGG and AAC:

ð1;0;0;0;0;0;0;1;0;0;0;1;0;0;1;0;0;0;1;0;0;1;0;0Þ:

These examples demonstrate that a polynucleo-
tide of length n � 1 is a fuzzy polynucleotide of
length 4n. It has a vector of length 4n because its
alphabet is of length 4. The vectors of our example
fuzzy polynucleotides used until now had compo-
nents only from the bivalent set {0, 1}. This is not
necessary, however, for the membership function of
a fuzzy set has the entire unit interval [0, 1] as its
range. Thus, the set of all fuzzy sets over an alpha-
bet such as hU, C, A, Gi, i.e. the fuzzy powerset
F(2hU, C, A, Gi), is infinite such that any element of

F(2hU, C, A, Gi) is a fuzzy letter, for example, the
following sequence:

hðU; 0:4Þ; ðC; 0:2Þ; ðA; 0Þ; ðG; 0:8Þi;
that is:

ð0:4; 0:2; 0; 0:8Þ:

There may exist circumstances, e.g. an experi-
ment or a genetic examination, in which we are not
certain whether a particular triplet such as UGX
bears a U, a C, an A or a G at its third site that
we have here marked with ‘X’. In such cases we may
suppose a degree of possibility to which any of these
four bases may be present at that site to obtain, for
example, the following vector:

ð1; 0; 0; 0; 0; 0; 0; 1; 0:4; 0:2; 0; 0:8Þ:
This vector says that:

(1) the first base is a U to the extent 1, a C to the
extent 0, an A to the extent 0, and a G to the
extent 0,

(2) the second base is a U to the extent 0, a C to the
extent 0, an A to the extent 0, and a G to the
extent 1,

(3) the third base is a U to the extent 0.4, a C to the
extent 0.2, an A to the extent 0, and a G to the
extent 0.8.

In any case, a polynucleotide of length n � 1 is a
fuzzy polynucleotide of length 4n, and thus, repre-
sentable by a real vector (x1, x2, . . ., x4n) of length
4n such that each component xi of the vector is an
element of [0, 1]. For details of this theory, see [1].

4. The fuzzy polynucleotide space
suggested by the present author

As early as 1971 Lotfi A. Zadeh introduced a geo-
metric interpretation of fuzzy sets by stating that
they can be represented as points in unit hypercubes
(see [8], p. 486). Many years later his idea was taken
up by Bart Kosko, who built a promising fuzzy-theo-
retical framework and geometry thereon [9,10]. This
geometry of fuzzy sets we have used in [1] to develop
our fuzzy polynucleotide space. For example, the
fuzzy nucleotide h(U, 0.4), (C, 0.2), (A, 0), (G,
0.8)i mentioned above is the 4-dimensional vector
(0.4, 0.2, 0, 0.8). Thus, it is a point in the 4-dimen-
sional unit hypercube [0, 1]4. Since every triplet
codon XYZ has a 3 � 4 = 12-dimensional vector, the
genetic code comprising 64 single codons can be
accommodated in [0, 1]12. A polynucleotide of length
2500 is a point in the cube [0, 1]10,000. In general, a
polynucleotideof lengthn is a fuzzypolynucleotideof
length 4n, and thus a point in [0, 1]4n.
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By supplementing the cube [0, 1]n with a distance
measure d over [0, 1]n we obtain an n-dimensional
metric space h[0, 1]n, di. In this space we can deter-
mine how distant from, and thus how different from
or similar to, one another two polynucleotide
sequences are. We have therefore called that space
the fuzzy polynucleotide space, FPNS for short (see
[1]).Wenowwill brieflyoutline theFPNS to tackle the
task of this paper in the sequel. To this end we need a
distance function. A function called ‘differ’ that
measures the difference between two polynucleo-
tide sequences will serve as our distance function. To
introduce itweneed twoauxiliary notions, ‘the union
of two fuzzy sets’ and ‘the count of a fuzzy set’:

The union A [ B of two fuzzy sets A and B over a
ground set V is defined by means of the membership
function mA [ B(x) thus: A [ B = {(x, mA [ B(x))øx 2 V

and mA [ B(x) = max(mA(x), mB(x))}. For example, if
{(x, 0.2), (y, 1)} and {(x, 0.8), (y, 0.6)} are two fuzzy
sets over our ground set {x, y}, then we have {(x,
0.2), (y, 1)} [ {(x, 0.8), (y, 0.6)} = {(x, 0.8), (y, 1)}.
The size or count of a fuzzy set A, written c(A), is
simply the arithmetic sum of the membership
degrees of its members. For instance, c({(x, 0.2),
(y, 1)}) = 0.2 + 1 = 1.2.1

Definition 1. If A = {(x1, a1), . . ., (xn, an)} and
B = {(x1, b1), . . ., (xn, bn)} are two fuzzy sets, then
the difference between A and B, written differ(A,
B), is:

differðA;BÞ ¼
P

ijai � bij
cðA[BÞ :

As an example we will compute the differences
between the following four polynucleotide
sequences s1—s4:

s1�UGGAAC codes for : tryptophan�asparagine
s2�UACUGG tyrosine�tryptophan
s3�AACUGG asparagine�tryptophan
s4�CUCUGG leucine�tryptophan

:

Their fuzzy vectors are:

s1�ð1; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 1; 0; 0; 1; 0; 0; 0; 1; 0; 0;
1; 0; 0Þ;

s2�ð1; 0; 0; 0; 0; 0; 1; 0; 0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 0; 1; 0;
0; 0; 1Þ;

s3�ð0; 0; 1; 0; 0; 0; 1; 0; 0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 0; 1;
0; 0; 0; 1Þ;

s4�ð0; 1; 0; 0; 1; 0; 0; 0; 0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 0; 1;
0; 0; 0; 1Þ:

We first will compute the differences between
some of these sequences:

differðs1; s2Þ ¼
10

11
¼ 0:91; differðs1; s3Þ ¼

12

12
¼ 1;

differðs2; s3Þ ¼
2

7
¼ 0:285; differðs2; s4Þ ¼

4

8
¼ 0:5;

differðs3; s4Þ ¼
4

8
¼ 0:5:

Note that sequences s1 and s2 have only one single
base in common at their initial sites; sequences s2
and s3 have only one base difference; sequences s1
and s3 have nothing in common at their correspond-
ing sites; and sequences s2 and s4 as well as s3 and s4
have four bases in common.

The fuzzy polynucleotide space that we have
originally introduced and discussed at length in
[1] is just the metric space h[0, 1]n, differi. In this
metric space we may measure not only the differ-
ence, but also the degree of similarity and identity
between polynucleotides in the following way. The
functions similar(A, B) and equal(A, B) read, respec-
tively, ‘‘the degree of similarity between fuzzy set A
and fuzzy set B’’ and ‘‘the degree of equality
between fuzzy set A and fuzzy set B’’.

Definition 2. similar(A, B) = 1 � differ(A, B).

For example, the degrees of similarity between
some of the above-mentioned polynucleotide
sequences are:

similarðs1; s2Þ ¼ 1� 0:91 ¼ 0:09;

similarðs1; s3Þ ¼ 1� 1 ¼ 0;

similarðs2; s3Þ ¼ 1� 0:285 ¼ 0:715;

similarðs2; s4Þ ¼ 1� 0:5 ¼ 0:5;

similarðs3; s4Þ ¼ 1� 0:5 ¼ 0:5:

Definition 3.

(1) equal(A, B) = similar(A, B).
(2) A and B are identical iff equal(A, B) = 1.

Two examples may illustrate:

equal(s1, s2) = similar(s1, s2) = 0.09
equal(s1, s3) = similar(s1, s3) = 0.

Definitions 1—3 imply the following theorem that
we will refer to in Section 5 below. Let A and B be
any fuzzy sets, then:

Theorem 1.

1. A and B are identical iff similar(A, B) = 1.
2. A and B are identical iff differ(A, B) = 0.
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Fuzzy set identity is thus the maximum degree
of similarity and the minimum degree of differ-
ence between two fuzzy sets. An example is
provided by the following two polynucleotide
sequences:

s1�ð1; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 1; 0; 0; 1; 0; 0; 0; 1; 0;
0; 1; 0; 0Þ;

s5�ð1; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 1; 0; 0; 1; 0; 0; 0; 1; 0;
0; 1; 0; 0Þ:

According to Theorem 1 these two sequences are
identical because differ(s1, s5) = 0 and thus simi-
lar(s1, s5) = 1.

We may distinguish between fuzzy polynucleo-
tides whose vectors have components only from {0,
1} like those used above, and those whose vectors
have at least one component from [0, 1] such as (1,
0, 0, 0, 0, 0, 0, 1, 0.4, 0.2, 0, 0.8). The former ones
we call crisp. The latter ones are genuinely fuzzy
representing states of our uncertainty about their
true chemical compounds. A crisp polynucleotide
such as any of the 64 usual triplet codons of the
genetic code is located at a corner of the respective
hypercube [0, 1]n, whereas the genuinely fuzzy
ones are points on a cube side or within the cube.
In any case, by supplementing the cube [0, 1]n with
a distance measure over [0, 1]n, e.g. differ, we
obtain an n-dimensional metric space. The n-
dimensional fuzzy polynucleotide space h[0, 1]n,
differi sketched above will be conveniently
denoted FPNSSadegh-Z.

5. The fuzzy polynucleotide space
suggested by Nieto et al. and Torres
et al.

Nieto et al. [3,4] and Torres et al. [5] have
utilized the conceptual framework upon which
FPNSSadegh-Z is based to suggest an alternative,
12-dimensional ‘fuzzy polynucleotide space’ that
we will refer to as FPNSNieto—Torres. We now will
briefly describe it to compare both spaces in the
sequel.

As pointed out in the last section, the genetic
code is 12-dimensional. A triplet codon of the form
XYZ has a 3 � 4 = 12-dimensional vector of the form
(x1, x2, . . ., x12) such that each xi 2 {0, 1}. Thus, any
of the 64 codons of the genetic code is located at
one of the 212 = 4096 corners of the unit hypercube
[0, 1]12 (see [1], pp. 12 f.). The n-dimensional space
FPNSSadegh-Z includes the restricted space h[0, 1]12,
differi as a subspace. It is obvious that in this latter,
small space only triplet codons can be dealt with.

Polynucleotides of length n > 3 require higher-
dimensional cubes.

However, Nieto et al. and Torres et al. seem to
have been fascinated by the elegant, 12-dimen-
sional space h[0, 1]12, differi of the genetic code
to the effect that they have chosen just this
confined space to accommodate therein all poly-
nucleotides of arbitrary length. How is it possible
to measure, for example, the difference between
two polynucleotides of length 10,000 in a 12-
dimensional space, even though they are not
points in this space? Judged from a formal and
mathematical point of view, Nieto et al. and
Torres et al. have had an ingenious idea to solve
this problem and to suggest their FPNSNieto—Torres
[4,5]. Unfortunately, however, their idea has
fatal consequences that render FPNSNieto—Torres
useless. This claim will be justified below. To this
end we introduce the auxiliary notion of the ‘base
profile of a polynucleotide’. It is the pivotal con-
cept of their system and the device by which they
fuzzify a crisp, i.e. non-fuzzy, polynucleotide of
arbitrary length. We must clearly understand it
because it is the cause of the trouble. It is in fact a
position specific relative frequency matrix that
reflects the relative frequencies of the 4 nitro-
genous bases at each position i 2 {1, 2, 3} of the
triplets of a sequence (4 � 3 = 12 dimensions). We
will explain it in three steps: first, by the term
‘local absolute base frequency’ we understand the
absolute frequency of a nitrogenous base at site
i 2 {1, 2, 3} of all triplets of a polynucleotide. For
example, base U appears 2 times at site 1 of the
three triplets of the polynucleotide sequence
UGGAACUCU. Thus, the local absolute frequency
of U at site 1 of the triplets of that molecule
is 2.

Second, by the term ‘local relative base fre-
quency’ we understand the relative frequency of a
nitrogenous base at site i 2 {1, 2, 3} of all triplets
of a polynucleotide sequence, i.e. its local abso-
lute frequency at site i 2 {1, 2, 3} divided by the
total frequency of all four bases at this site i 2 {1,
2, 3} in the whole molecule, i.e. divided by
the number of triplets constituting the molecule.
For example, in the above molecule UGGAACUCU
the total frequency of all four bases at site 1 of
the triplets is 3. Thus, the local relative frequency
of U at site 1 of the molecule’s triplets is
2/3 = 0.66.

Third, the ordered set of local relative frequen-
cies of all four bases U, C, A, and G at all three sites
1, 2, and 3 of triplets of a polynucleotide molecule
we call the base profile of the molecule. Examples
will be given in the tables below. Note that the base
profile of a polynucleotide yields a 12-dimensional
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real vector (x1, . . ., x12) of the following form with
each xi 2 [0, 1] because 4 � 3 = 12:
ðU at site 1; C at site 1; A at site 1; G at site 1;
U at site 2; C at site 2; A at site 2; G at site 2;
U at site 3; C at site 3; A at site 3; G at site 3Þ:

(1)

We will partition the class of polynucleotides, say
RNA, into the category of single triplets XYZ of which
there are 64 different types, and the category of
compound sequences. The latter ones are concate-
nations of n > 1 single triplets such as UGGAACUCU
and larger molecules. The ingenious idea of Nieto
et al. and Torres et al. referred to above may be
described as follows:

To treat a polynucleotide of arbitrary length as a
point in the small space [0, 1]12, determine the base
profile of the polynucleotide molecule! That is,
count the local frequency of each one of the four
nitrogenous bases U, C, A, and G separately at each
site i 2 {1, 2, 3} of the triplets XYZ of the polynu-
cleotide, be it a single triplet or a compound poly-
nucleotide. Because 4 � 3 = 12 you will obtain 12
natural numbers indicating local absolute frequen-
cies of the four nitrogenous bases. Divide each of
these single-base specific 12 numbers by the number
of the whole molecule’s triplets. You will get 12
local, i.e. position specific, relative frequencies
ordered as a real vector of the form (x1,
x2, . . ., x12) with xi 2 [0, 1] like (1) above. This
vector represents the base profile searched for.
Thus, you can transform any polynucleotide of arbi-
trary length to a point in [0, 1]12 enabling fuzzy-
theoretical analyses in a 12-dimensional space.
Nieto et al. and Torres et al. have allegedly been
able even to compare whole genomes of different
organisms with one another, e.g. the genome of
Mycobacterium tuberculosis with that of Escherichia
coli and others (see [4—6]). To explain why their
efforts are all in vain nonetheless, we must go into
detail. The procedure may be demonstrated by a
simple example. Let us compare the two sequences

s1 and s2, i.e. UGGAAC and UACUGG, which we have
also used in FPNSSadegh-Z in the last section. To
prevent confusion between both systems, in Nieto
et al.’s system we will signify a sequence by ‘‘seq’’
instead of ‘‘s’’:

seq1�UGGAAC; seq2�UACUGG:

They are compound sequences of length 6 each
and have 24-dimensional vectors that cannot be
dealt with in [0, 1]12. To do so, their base profiles
are determined according to the algorithm intro-
duced above (see Table 1).

From the relative frequencies on the right-hand
side of Table 1 we obtain the base profiles of both
sequences in the form of the following 12-dimen-
sional membership vectors:

seq1�ð0:5; 0; 0:5; 0; 0; 0; 0:5; 0:5; 0; 0:5; 0; 0:5Þ;
seq2�ð1; 0; 0; 0; 0; 0; 0:5; 0:5; 0; 0:5; 0; 0:5Þ:

Note that in the same fashion every polynucleo-
tide of arbitrary length may be transformed to a 12-
dimensional vector. It thereby becomes a point in [0,
1]12. What is now needed to obtain a metric space is
a distance function. Nieto et al. and Torres et al. use
and analyze a host of distance functions. But they
favor the same distance function differ that we have
introduced in Definition 1 above, on the one hand,
and call it ‘d’ (cf. [3,5]); and another distance
function that they call dif, on the other (see [4],
p. 716). We will use dif that is their most recent
device. It is defined indirectly by their similarity
function, sim, that we must introduce first (see [4],
p. 714). An auxiliary notion we need is ‘the cano-
nical midpoint’ of two fuzzy sets introduced by
Nieto and Torres in ([12], p. 85).

Definition 4. If A = {(x1, a1), . . ., (xn, an)} and
B = {(x1, b1), . . ., (xn, bn)} are two fuzzy sets, then
C(A, B) is the canonical midpoint of A and B iff C(A,
B) = {(x1, a1 + b1/2), . . ., (xn, an + bn/2)}.
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Table 1 Local absolute and relative frequencies of nitrogenous bases at the three base sites of all triplet codons in
UGGAAC and UACUGG

Absolute frequencies Relative frequencies

U C A G Total U C A G

UGGAAC (seq1)
First site 1 0 1 0 2 0.5 0 0.5 0
Second site 0 0 1 1 2 0 0 0.5 0.5
Third site 0 1 0 1 2 0 0.5 0 0.5

UACUGG (seq2)
First site 2 0 0 0 2 1 0 0 0
Second site 0 0 1 1 2 0 0 0.5 0.5
Third site 0 1 0 1 2 0 0.5 0 0.5
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For example, the canonical midpoint of A = {(x,
0.2), (y, 1)} and B = {(x, 0.8), (y, 0.6)} is the fuzzy set
C(A, B) = {(x, 0.5), (y, 0.8)}. We recall an additional
auxiliary that we need, i.e. the notion of ‘the
intersection of two fuzzy sets’:

The intersection A \ B of two fuzzy sets A and B
over a ground set V is defined by means of the
membership function mA \ B(x) thus: A \ B = {(x,
mA \ B(x))øx 2 V and mA \ B(x) = min(mA(x), mB(x))}.
For example, if {(x, 0.2), (y, 1)} and {(x, 0.8), (y,
0.6)} are two fuzzy sets over the ground set {x, y},
then we have {(x, 0.2), (y, 1)} \ {(x, 0.8), (y,
0.6)} = {(x, 0.2), (y, 0.6)}.

In the following definition ([4], p. 714), the term
‘‘sim(A, B)’’ stands for ‘‘the degree of similarity
between fuzzy set A and fuzzy set B’’; and the term
‘‘dif(A, B)’’ stands for ‘‘the degree of difference
between fuzzy set A and fuzzy set B’’.

Definition 5.

(1) sim(A, B) = c(A \ B)/c(C(A, B)).
(2) dif(A, B) = 1 � sim(A, B).

The recent version of Nieto et al.’s fuzzy poly-
nucleotide space, FPNSNieto—Torres, is the metric
space h[0, 1]12, difi (cf. [4], pp. 714 ff.). In this
space we obtain the following similarity and dissim-
ilarity values for our above-mentioned sequences
seq1 and seq2:

simðseq1; seq2Þ
¼ cðseq1 \ seq2Þ=cðCðseq1; seq2ÞÞ
¼ cð0:5; 0; 0; 0; 0; 0; 0:5; 0:5; 0; 0:5; 0; 0:5Þ
=cð0:75; 0; 0:25; 0; 0; 0; 0:5; 0:5; 0; 0:5; 0; 0:5Þ
¼ 2:5=3 ¼ 0:833;

difðseq1; seq2Þ ¼ 1� 0:833 ¼ 0:167:

Recall that in FPNSSadegh-Z we obtained for the
same sequences the following values:

similarðUGGAAC;UACUGGÞ ¼ 0:09;

differðUGGAAC;UACUGGÞ ¼ 0:91:

Thus, sim 6¼ similar and dif 6¼ differ. These
remarkably large differences between the values
obtained in both spaces might be due to the
fuzzification method used by Nieto et al. and
Torres et al. that consists in the determination
of the base profile of a polynucleotide (see
Table 1). For the moment this aspect may be
ignored because it is immaterial. The inadequacy
of FPNSNieto—Torres is another matter and, as we will
show in the next section, something unpleasant. To
prepare the proof of this claim we need two
additional notions. In an analogous fashion, as
we did for our FPNSSadegh-Z, Nieto et al. ([4], p.

720) also introduce equality and identity notions
for fuzzy sets thus:

Definition 6.

(1) eq(A, B) = sim(A, B).
(2) A and B are identical iff eq(A, B) = 1.

Definitions 5—6 imply the following theorem that
is an analogue of Theorem 1 stated in Section 4:

Theorem 2.

(1) A and B are identical iff sim(A, B) = 1.
(2) A and B are identical iff dif(A, B) = 0.

6. FPNSNieto—Torres is irremediably
faulty

Before we pinpoint the reason why FPNSNieto—Torres is
objectionable, let us first present an intuitive exam-
ple that may foreshadow our causal diagnosis below.
We will see that in the metric space FPNSNieto—Torres
it does not make any difference whether you use in a
text a word such as, say JUANNIETO, or any permu-
tation of its triplets, say ETONNIJUA. Both words are
considered identical in FPNSNieto—Torres to the effect
that no practicable and sensible semantics will be
possible. This peculiarity of Nieto et al.’s system is
not only strongly counter-intuitive, but also leads to
absurd results. Let us reconsider, for example, our
two polynucleotide sequences used in the last sec-
tion, i.e.:

seq1�UGGAAC codes for : tryptophan�asparagine
seq2�UACUGG tyrosine�tryptophan

These sequences have only one single base in
common, i.e. baseU at their initial sites. The remain-
der of the sequences, 83.3%, is completely different.
Their congruence amounts merely to 16.7%. We have
seen, however, that in FPNSNieto-et-al they appear
highly similar and only slightly different:

simðseq1; seq2Þ ¼ 0:833;

difðseq1; seq2Þ ¼ 1� 0:833 ¼ 0:167:

This result is unacceptable because the reality is
the other way around. Wemay witness an even more
strange performance of FPNSNieto-et-al by rearranging
the triplets of the first sequence above, seq1. This
sequence is a concatenation of the triplets UGG and
AAC. A permutation of its triplets yields:

seq3�AACUGG codes for : asparagine�tryptophan
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Note that seq1 and seq3 are compounds of the
same triplet codons AAC and UGG, although they are
two completely different polynucleotidemolecules;
and as indicated by the peptid strings they code for,
their causal effects are different as well. Due to
these molecular-biological differences no bioche-
mist and no geneticist or genetic engineer would
consider seq1 and seq3 to be identical polynucleo-
tide sequences. Correspondingly, no such expert
would approve gene-technically substituting in a
chromosome the gene AACUGG for the gene
UGGAAC on the grounds that they were identical.
They are not. However, it is exactly the supposition
of this objectively non-existent identity that ren-
ders FPNSNieto—Torres unacceptable. The reason is
this. Although seq1 6¼ seq3, Table 2 demonstrates
that seq3 has the same base profile as seq1 that
was displayed in Table 1 in the last section.

From the relative frequencies on the right-hand
side of Table 2 we obtain for sequence seq3 the
following membership vector reduced to 12-dimen-
sions:

seq3�ð0:5; 0; 0:5; 0; 0; 0; 0:5; 0:5; 0; 0:5; 0; 0:5Þ
�AACUGG:

Recall that for seq1 we had obtained the following
vector that is identical with seq3 above:

seq1�ð0:5; 0; 0:5; 0; 0; 0; 0:5; 0:5; 0; 0:5; 0; 0:5Þ
�UGGAAC

It is therefore not surprising that the awkward-
ness for FPNSNieto—Torres presents itself convincingly
right now. Although the degree of molecular con-
gruence between AACUGG and UGGAAC is 0, one
may easily compute:

simðseq1; seq3Þ
¼ cðseq1 \ seq3Þ=cðCðseq1; seq3ÞÞ
¼ cð0:5; 0; 0:5; 0; 0; 0; 0:5; 0:5; 0; 0:5; 0; 0:5Þ
=cð0:5; 0; 0:5; 0; 0; 0; 0:5; 0:5; 0; 0:5; 0; 0:5Þ
¼ 3=3 ¼ 1;

difðseq1; seq3Þ ¼ 1� 1 ¼ 0;

eqðseq1; seq3Þ ¼ 1 i:e:;

eqðUGGAAC;AACUGGÞ ¼ 1:

These results, in conjunction with Theorem 2 sta-
ted in the last section, imply that in FPNSNieto—Torres:

UGGAAC and AACUGG are identical:

This consequence also follows both from the
various difference and similarity concepts Nieto
et al. introduce and analyze in [4], and from the
premise that the space FPNSNieto—Torres, i.e. h[0,
1]12, difi, is allegedly a metric space. The definition
of the term ‘metric space’ implies for any two points
x, y 2 [0, 1]12 that the following statement is true:

difðx; yÞ ¼ 0 iff x ¼ y:

Hence, in FPNSNieto—Torres sequences seq1 and seq3
are identical polynucleotides. But are they really
identical? They have no single base in common at
their corresponding sites. And as we have pointed
out above, they code for completely different pep-
tid strings. To call them identical would be like
claiming that a six-digit natural number such as
831456 is identical with its permutation 456831.
In contrast, we obtain the following realistic results
in FPNSSadegh-Z:

� differ(UGGAAC, AACUGG) = 1
� similar(UGGAAC, AACUGG) = 0
� UGGAAC and AACUGG are not identical.

It is worth noting that in FPNSNieto—Torres even
polynucleotide sequences of unequal size may turn
out ‘identical’ when they have the same base pro-
file, and thus, identical vectors. Here is a simple
example:

with:

simðs4; s5Þ ¼ 1; difðs4; s5Þ ¼ 0; eqðs4; s5Þ ¼ 1:

So, seq4 and seq5 are also identical. However, it
will be impossible to convince any student of bio-
sciences or medicine or the present reader of this
paper that things are so as FPNSNieto—Torres main-
tains.

7. Results

It has been shown in the preceding sections that
FPNSNieto—Torres, proposed and extensively analyzed
by Nieto et al. [3,4] and Torres et al. [5,6], is
counter-intuitive. In their so-called ‘‘fuzzy polynu-
cleotide space’’ two structurally and functionally
completely different polynucleotide chains turn out
highly similar and even identical. On this account it
is to be considered as defective.
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seq4�UGGAAC codes for : tryptophan�asparagine
seq5�AACUGGAACUGG asparagine�tryptophan�asparagine�tryptophan
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The cause of its defectiveness is easily identified.
It consists in the use of the purely statistical base
profiles to transform any polynucleotide of arbitrary
length to a 12-dimensional vector. The authors seem
to have overlooked that ‘the base profile of x is y’ is
not a one-to-one, but a many-to-one function that
ignores the molecule-specific order of triplets in a
molecule. As we have seen above, two or more
different polynucleotide sequences such as:

UGGAAC
AACUGG

will therefore occupy one and the same point in
[0, 1]12 when they have the same base profile.
Thus, the determination of the base profile of a
polynucleotide chain destroys the order in which
single triplets are linearly linked to form what has
come to be called a polynucleotide chain or
sequence. By ignoring the order of the triplet
codons in a sequence Nieto et al.’s conception
treats the ordered triplets of a polynucleotide
chain as an unordered heap of triplets. This is
demonstrated by the tables of base frequencies
and profiles in the present paper and in [4,5].
These statistics disregard the relational location
of a triplet in a sequence, and hence, the sequen-
tial nature of a polynucleotide.

The disregard of FPNSNieto—Torres for order in a
polynucleotide sequence is characterized by iden-
tifying such a sequence of n > 1 triplet codons with
any other one that possesses the same base profile.
However, base profile is a statistical ‘average out’
attribute and is defined by the proportion of nitro-
genous bases and the three triplet sites {1, 2, 3}. As
we have exemplified above by the following two
sequences with ‘identical’ base profile:

identical base profiles are ubiquitous to the effect
that a polynucleotide of length 258 may possess the
same base profile as a polynucleotide of length 6. It

is irrational to call them identical nonetheless
because in the same fashion the human genome
could turn out identical with that of Drosophila
melanogaster. But Nieto et al. would have to
explain how it is possible that these two identical
genomes bring about two species of such huge
difference that exists between Homo sapiens and
Drosophila melanogaster.

From what has just been stated we can conclude
that in FPNSNieto—Torres a polynucleotide sequence
has a potentially infinite number of pseudo-doubles
which fake similarity and identity with the original.
A salient subset of these pseudo-doubles is the
tripletwise permutation set of a polynucleotide.
To define the term ‘tripletwise permutation’ we
may consider any polynucleotide molecule that is
composed of n � 1 different triplets as a sequence
of the form TRI1TR2. . .TRInwhose units are its triplet
codons TRIi with 1 � i � n. For instance, the RNA
molecule:

seq6�CUCAGGUCACAC

of length 12 comprises the following four triplets:
CUC, AGG, UCA, CAC. It is thus a concatenation
thereof. Any re-ordering of the triplet sequence
in a molecule of the form TRI1TR2. . .TRIn is a triplet-
wise permutation of the molecule. For instance, our
polynucleotide chain seq6 concatenating 4 triplets
has 4! = 24 tripletwise permutations.

Any polynucleotide sequence composed of n � 1
different triplets TRI1, . . ., TRIn has n! tripletwise
permutations. Unfortunately, in FPNSNieto—Torres all
n! tripletwise permutations of such a polynucleotide
turn out to be identical molecules because they
have the same base profile and for that reason
the same 12-dimensional vector. For instance,
regarding the above example with n = 4 triplets

we present only one of its 24 tripletwise permuta-
tions, i.e. sequence seq7, that in FPNSNieto—Torres is
identical with seq6:
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Table 2 Local absolute and relative frequencies of nitrogenous bases at the three base sites of all triplet codons in
AACUGG (compare with UGGAAC in Table 1. They are identical!)

Absolute frequencies Relative frequencies

U C A G Total U C A G

AACUGG (seq3)
First site 1 0 1 0 2 0.5 0 0.5 0
Second site 0 0 1 1 2 0 0 0.5 0.5
Third site 0 1 0 1 2 0 0.5 0 0.5

seq4�UGGAAC codes for : tryptophan�asparagine
seq5�AACUGGAACUGG asparagine�tryptophan�asparagine�tryptophan;
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This example speaks for itself. It demonstrates
convincingly the disregard for order that is charac-
teristic of Nieto et al.’s construct. The term ‘‘fuzzy
polynucleotide space’’ in ‘‘FPNSNieto—Torres’’ is there-
fore a misnomer. Their construct does not treat
polynucleotides as ordered biomolecules to mea-
sure relationships such as distances and similarities
between them. It is concerned with unordered
heaps of their triplets whose properties and rela-
tionships it measures. It is true that all 24 triplet-
wise permutations of the RNA chain
CUCAGGUCACAC comprise the same heap of 4 tri-
plets. That is, their triplet heaps are identical. But
that does not mean that they are identical
sequences. For this reason FPNSNieto—Torres enables
inquiries only into unordered heaps, but not into
ordered sequences. So, it does not bear any rele-
vance to biosciences and medicine. In contrast to
what its authors repeatedly claim in their publica-
tions on their construct [3—6], it cannot be reason-
ably used in sequence analysis, sequence
comparison, diagnostics or elsewhere.

8. Conclusion

To summarize, it is not Nieto et al.’s concepts of
difference, similarity, equality or identity that
would render their system inadequate. Conceptual
shortcomings of this type are corrigible. Incorrigi-
bly faulty, however, is the very fundament of
FPNSNieto—Torres consisting in the method the
authors use to fuzzify polynucleotide chains so as
to transform them to points in [0, 1]12, i.e. the
concept of base profile. In our concluding analysis
of this issue we confine ourselves to RNA. What is
said also applies to DNA if one substitutes the word
‘DNA’ for ‘RNA’.

Let bp be a unary function termed ‘the base
profile of’ that maps all non-fuzzy RNA sequences
to their base profile — as introduced in Section 5
above — such that for any RNA molecule y of length
n � 3 we have that bp(y) = (x1, . . ., x12) with each
xi 2 [0, 1]. We thus obtain the mapping:

bp : fRNAg! ½0; 1�12

where for clarity’s sake ‘{RNA}’ stands as short-
hand for ‘{yjy is an RNA molecule of length n � 3}’
representing the set of all RNA sequences com-
prising at least one triplet. FPNSNieto—Torres is based
on such a mapping to produce the material that it
processes. Unfortunately, however, the function

bp is not injective and thereby creates an unde-
sirable consequence. To explain, let us first con-
sider its inverse, bp�1. While bp maps a point of its
domain to a point of its range, its inverse maps a
point of its domain [0, 1]12 to a set of RNA
molecules. Its range is thus a family of sets, i.e.
the powerset of {RNA}:

bp�1 : ½0; 1�12! 2fRNAg

such that for any x = (x1, . . ., x12) 2 [0, 1]12:

bp�1ðxÞ ¼ fy 2 fRNAgjbpðyÞ ¼ xg 2 2fRNAg: (2)

Let us call an object that is identical with a
particular object x, an identical of x. The set of
all identicals of an object x, written id(x), is:

idðxÞ ¼ fyjx is identical with yg: (3)

This informal definition (3) and Theorem 2 in
Section 5 imply for any RNA sequence si:

idðsiÞ ¼ fs jjsimðsi; s jÞ ¼ 1g ¼ fs jjdifðsi; s jÞ ¼ 0g:
(4)

The undesirable consequence of bp referred to
above may now be described as follows. Given any
particular RNA sequence comprising n � 1 triplets
such that its base profile is the point si in [0, 1]12, we
have according to (2)—(4) above the following rela-
tionships in FPNSNieto—Torres:

fs jjsimðsi; s jÞ ¼ 1g ¼ fs jjdifðsi; s jÞ ¼ 0g

¼ bp�1ðsiÞ 2 2fRNAg

¼ fy 2fRNAgjbpðyÞ ¼ sig: (5)

Statements (4) and (5) imply:

idðsiÞ ¼ fy 2fRNAgjbpðyÞ ¼ sig:
The resulting set {y 2 {RNA}øbp(y) = si} represents

the set of all identicals of our RNA sequence si. Fatal
to FPNSNieto—Torres is the fact that this set is poten-
tially infinite. That is, according to FPNSNieto—Torres
every RNA molecule consisting of n � 1 triplets has a
potentially infinite set of identicals. The reason is
that for any such RNA sequence si the following two
Inductions 1 and 2 obtain in FPNSNieto—Torres:

Induction 1.

(1) si 2 id(si),
(2) If sj 2 id(si), then sp 2 id(si) for 8sp 2 tp(sj)

where tp(sj) is the tripletwise permutation set
of sj.
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seq6�CUC�AGG�UCA�CAC codes for leucine�arginine�serine�histidine
seq7�AGG�CUC�CAC�UCA codes for arginine�leucine�histidine�serine:
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Proof. The basis step, step 1, is trivial. The induc-
tion step, step 2, is implied by the definition of the
operator bp according to which all elements of a
tripletwise permutation set of an RNA molecule
have the same base profile and thus the same 12-
dimensional vector. Therefore, they are the same
point in [0, 1]12.

Induction 2.

(1) si 2 id(si),
(2) If sj 2 id(si), then 2sj 2 id(si) such that 2sj is a

sequence of the same structure and twice as
large as sj.

Proof. Step 1 is trivial. Again, the induction step
follows from the definition of the operator bp
according to which an RNA sequence sj and any of
its multipliers have the same base profile and thus
the same 12-dimensional vector. So, they are the
same point in [0, 1]12.

Note that the basis step, step 1, in both induc-
tions follows from the predicate-logical axiom
of identity (‘x = x’) and is thus a logical truth.
On this account a set id(si) is never empty. It
contains at least sequence si itself. So, the induc-
tion step in both inductions fires automatically to
the effect that the set of identicals of a polynu-
cleotide, id(si), inductively grows. The system
FPNSNieto—Torres must therefore be viewed as
inductively explosive in that the set of identicals
of a polynucleotide molecule unstoppably
expands. In this way the system spontaneously
generates a potentially infinite set of false
identity claims and is therefore useless both in
theory and practice. This disaster is due to its
fundamental operator bp. In conjunction with
Theorem 2, stated in Section 5, bp leads to induc-
tive explosion of the set of identicals of a poly-
nucleotide.

By contrast, the original system FPNSSadegh-Z
suggested by the present author is based on the
concept of an ordered fuzzy set. In this system
the mapping of polynucleotides to the metric
space h[0, 1]n, differi is injective. Equivocations
and problems as above cannot arise. Moreover,
FPNSSadegh-Z is capable of dealing with genuinely
fuzzy polynucleotide sequences whose vectors
are of the form (x1, . . ., xn) with each xi 2 [0, 1].
Nieto, Torres et al.’s system, however, also
lacks this capability because its base profile
function bp operating on {RNA} deals only with
crisp, non-fuzzy polynucleotide sequences with
bit vectors of the form (y1, . . ., yn) such that
yn 2 {0, 1}.

Appendix

Many publications on polynucleotides in compu-
ter science journals contain errors regarding the
nature, structure, and function of polynucleotides.
Their authors confuse, for example, nucleotides
with nucleosides, nucleotides with nitrogenous
bases or even with nucleic acids, triplet codons with
single nucleotide molecules, codons with amino
acids they code for, and the like. It may therefore
be helpful at this juncture to clarify the terminology
so as to prevent misunderstandings.

The genetic material of biological species known
as nucleic acids consists of large sequential mole-
cules. There are two types of nucleic acids, deoxy-
ribonucleic acid (DNA) and ribonucleic acid (RNA).
DNA is the genetic material that all single-cell and
multiple-cell organisms and some types of viruses
(DNAviruses) inherit from their parents (recall ‘dou-
ble helix’). Some other viruses bear RNA as their
genetic material and are therefore called RNA
viruses. Both DNA and RNA govern, among other
things, the production of proteins in organisms
and viruses, and thus their life and death affairs.
Our knowledge of their structure and function is
therefore essential in managing medical and bio-
technological problems.

As a linear polymer a DNA and RNA molecule is a
sequence of smaller molecules called its monomeric
units. Chemically these monomeric units belong in
the category of nucleotides. A number of n > 1
nucleotides are linearly linked by bonds to form a
chain that is called a trinucleotide or triplet if n = 3,
an oligonucleotide if ‘n is small’, and a polynucleo-
tide if ‘n is large’. A mononucleotide is a single
nucleotide molecule. For simplicity’s sake we will
use the term ‘polynucleotide’ only to denote all
elements of the whole category. For example, the
genetic material of the tiny RNA virus HIV consists of
about 10,000 nucleotide monomers. Any of the 46
human chromosomes in a human cell nucleus is
composed of about sixty-five million of them.

A mononucleotide is itself composed of three
smaller molecular building blocks: a five-carbon
sugar, a phosphate group, and a nitrogenous base
(see Fig. 1a). In a DNA and RNA polynucleotide
chain, a nucleotide monomer has its phosphate
group bonded to the sugar of the next nucleotide
link. So the chain has a regular sugar-phosphate
backbone with variable appendages. These appen-
dages are four possible nitrogenous bases called:

Adenine = A
Cytosine = C
Guanine = G
Thymine = T
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in DNA, but in place of the latter,

Uracil = U

in RNA. The specific sequence of these base appen-
dages in a polynucleotide is characteristic of the
molecule and is referred to as its base sequence (see
Fig. 1b). Whereas a particular polynucleotide may
have the base sequence GUAUACUGU. . ., etc.,
another one may have the base sequence
GTTTACACT. . ., etc.

In a cell’s chain of command, instructions for
protein synthesis flow from DNA to RNA (i.e., mes-
senger RNA = mRNA) to protein. In the latter step,
the genetic message encoded in an mRNA base
sequence such as GUAUACUGU. . . orders amino acids
into a protein of specific amino acid sequence. The
mRNA message is read in the cell as a sequence of
base triplets XYZ, analogous to three-letter code
words. An mRNA base triplet XYZ is therefore called
a codon. A triplet codon XYZ along an mRNA

sequence specifies which one of the 20 amino acids
will be inserted in the appropriate site of a protein
chain. For example, the codon GUA is responsible
for the amino acid valine. Since there are four bases
for mRNA, there are 4 � 4 � 4 = 64 such codons
making up the dictionary of the genetic code. The
dictionary is redundant because 64 > 20. It is not
one-to-one, but many-to-one. For instance, four
codons GUA, GUC, GUG, and GUU stand for the
amino acid valine, and thus you get from the above
mRNA segment GUAUACUGU. . . the protein chain
valine-tyrosine-cysteine-. . ., etc.

Due to these bio-informational facts, the focus of
our concern in the main text will be the base
sequence of polynucleotides in that we will trans-
late it into an ordered fuzzy set. The idea behind
this plan is the recognition that by translating a
subject into a fuzzy set the constructs of fuzzy
theory become accessible to that subject domain.
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Figure 1 A nucleotide monomer (a) and a single-strand
polynucleotide (b). P = phosphate group, S = sugar, and
B = nitrogenous base. In DNA, the sugar is deoxyribose,
whereas the sugar molecule in RNA is ribose. A DNA chain
is usually double-stranded. When synthesizing mRNA and
as a cell prepares to divide, the two strands are separated.
But we will here not be concerned with these details.


